Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a: Xét tứ giác AHBE có
M là trung điểm của AB
M là trung điểm của HE
Do đó: AHBE là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBE là hình chữ nhật
b: Xét tứ giác ABFC có
H là trung điểm của AF
H là trung điểm của BC
Do đó:ABFC là hình bình hành
mà AB=AC
nên ABFC là hình thoi
a) Ta có: E đối xứng với H qua M (gt)
=> M là trung điểm của HE
Xét tứ giác AHBE có:
MA = MB (M là trung điểm của AB)
ME = MH (M là trung điểm của HE)
\(\widehat{AHB}=90^o\)(Vì AH là đường cao vuông góc với BC)
=> AHBE là hcn (đpcm)
b, Vì ABC là tam giác cân
=> AB = AC (1)
Vì F đối xứng với A qua H
=> FB = AB ; FC = AC (2)
Từ (1) và (2) => AB = AC = FC = FB
Xét tứ giác ABFC có: AB = AC = FC = FB (cm trên)
=> ABFC là hình thoi (đpcm)
Câu a và b cô hướng dẫn:
a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
b) Tứ giác FDEA là hình bình hành nên AF // DE
c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)
Do tam giác ABC vuông tại A, M là trung điểm BC nên MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)
Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)
\(\Rightarrow\widehat{FAM}=90^o\)
Vậy tam giác AFM vuông.
c) Gọi giao điểm của AM và DE là G.
Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.
Vậy thì ta có ngay AFDE là hình chữ nhật.
Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.
Vậy thì AM, DE và KI đồng quy tại điểm G.
a: Xét tứ giác AMHK có
góc AMH=góc AKH=góc KAM=90 độ
=>AMHK là hình chữ nhật
=>AH=MK
b: Xét ΔAHD có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHD cân tại A
=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE và AC là phân giác của góc HAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
c: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 dộ
=>BD vuông góc DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>goc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra BD//CE
a: Xét tứ giác ABCD có
M là trung điểm của BD
M là trung điểm của AC
Do đó: ABCD là hình bình hành
mà \(\widehat{BAD}=90^0\)
nên ABCD là hình chữ nhật