\(\ne\) 1;-1 và \(\frac{ab+1}{b}+\frac{bc+1}{c}+\frac{ac+1}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

vip

vip

vip

chúc bạn học ngu

11 tháng 11 2018

Ta có: \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=\frac{1}{c}-\frac{1}{b}\\b-c=\frac{1}{a}-\frac{1}{c}\\c-a=\frac{1}{b}-\frac{1}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=\frac{b-c}{bc}\left(1\right)\\b-c=\frac{c-a}{ac}\left(2\right)\\c-a=\frac{a-b}{ab}\left(3\right)\end{cases}}\)

Nhân (1), (2), (3) vế theo vế, ta được:

\(\left(a-b\right)\left(b-a\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2.b^2.c^2}\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2.b^2.c^2}\right)=0\)

Do đó: \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)

\(\Rightarrow a=b\) hoặc \(b=c\) hoặc \(c=a\)

Với a = b thay vào (1) ta được: b = c => a = b = c.

Với b = c thay vào (2) ta được: c = a => a = b = c.

Với c = a thay vào (1) ta được: a = b => a = b = c.

\(\Rightarrow a=b=c\left(đpcm\right)\)

21 tháng 12 2016

hay

 

13 tháng 4 2018

theo bất đẳng thức côsi ta có :

\(\left(a+b\right)^2\ge4ab\)

\(\left(b+c\right)^2\ge4bc\)

\(\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

5 tháng 4 2017

a) đề thiếu òi bạn à            

28 tháng 3 2017

cái này tương tự nà chỉ khác tử -> mẫu Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

6 tháng 5 2019

Thay abc = 1 vào biểu thức ta có

\(\frac{a.abc}{ab+abc.a+abc}+\frac{b}{bc+b.acb+abc}+\frac{c}{ac+c+1}\)

= \(\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+ab^2c+abc}+\frac{c}{ac+c+1}\)

= \(\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)

= \(\frac{ac}{\left(ac+c+1\right)}+\frac{1}{\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)

= \(\frac{ac+c+1}{ac+c+1}\)

= 1 (đpcm)

Nếu có gì không hiểu nhớ nt cho mình nha

Y
6 tháng 5 2019

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{a\cdot abc+abc+ab}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{a+1+ab}\)

\(=\frac{ab+a+1}{ab+a+1}=1\)