Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(a,b,c\ne\pm1\) và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\) Chứng minh rằng : \(a=b=c\)
Ta có: \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=\frac{1}{c}-\frac{1}{b}\\b-c=\frac{1}{a}-\frac{1}{c}\\c-a=\frac{1}{b}-\frac{1}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=\frac{b-c}{bc}\left(1\right)\\b-c=\frac{c-a}{ac}\left(2\right)\\c-a=\frac{a-b}{ab}\left(3\right)\end{cases}}\)
Nhân (1), (2), (3) vế theo vế, ta được:
\(\left(a-b\right)\left(b-a\right)\left(c-a\right)=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2.b^2.c^2}\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\frac{1}{a^2.b^2.c^2}\right)=0\)
Do đó: \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
\(\Rightarrow a=b\) hoặc \(b=c\) hoặc \(c=a\)
Với a = b thay vào (1) ta được: b = c => a = b = c.
Với b = c thay vào (2) ta được: c = a => a = b = c.
Với c = a thay vào (1) ta được: a = b => a = b = c.
\(\Rightarrow a=b=c\left(đpcm\right)\)
theo bất đẳng thức côsi ta có :
\(\left(a+b\right)^2\ge4ab\)
\(\left(b+c\right)^2\ge4bc\)
\(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
cái này tương tự nà chỉ khác tử -> mẫu Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Thay abc = 1 vào biểu thức ta có
\(\frac{a.abc}{ab+abc.a+abc}+\frac{b}{bc+b.acb+abc}+\frac{c}{ac+c+1}\)
= \(\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+ab^2c+abc}+\frac{c}{ac+c+1}\)
= \(\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
= \(\frac{ac}{\left(ac+c+1\right)}+\frac{1}{\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
= \(\frac{ac+c+1}{ac+c+1}\)
= 1 (đpcm)
Nếu có gì không hiểu nhớ nt cho mình nha