Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{a}{b}=\dfrac{a.\left(b+d\right)}{b.\left(b+d\right)}=\dfrac{ab+bd}{b^2+bd}\)
\(\dfrac{a+c}{b+d}=\dfrac{b\left(a+c\right)}{b\left(b+d\right)}=\dfrac{ab+bc}{b^2+bd}\)
Ta so sánh :
\(\dfrac{ab+bd}{b^2+bd}\) và \(\dfrac{ab+bc}{b^2+bd}\)
Vì cùng mẫu nên ta chỉ so sánh :
\(ab+bd\) và \(ab+bc\)
\(\Rightarrow\) Ta tiếp tục so sánh :
\(bd\) và bc thì ta có : bd < bc (1)
Từ 1, suy ra :
\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
Mà \(\dfrac{a}{b}< \dfrac{c}{d}\)
Suy ra : \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\) (đpcm)
Bài 1 : tham khảo trong đây nè!!
Câu hỏi của Hoàng Nguyễn Xuân Dương - Toán lớp 6 - Học toán với OnlineMath
Câu 1 :
a. Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a \(\in\) z ) \(\Leftrightarrow\) a2 - n2 = 2006 \(\Leftrightarrow\) ( a - n ) ( a + n ) = 2006 (*)
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)
+ Nếu a,n cùng tính chất chẵn hoặc lẻ thì (a-n) chia hết 2 và (a+n) chia hết 2 nên vế trái chia hết cho 4 và vế phải không chia
hết cho 4 nên không thỏa mãn (*)
Vậy không tồn tại n để n2 + 2006 là số chính phương.
b. n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1
+ 2006 = 3m+2007= 3(m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số.
Câu 2:Ta xét 3 trường hợp \(\dfrac{a}{\text{ }b}\) = 1 \(\dfrac{a}{b}\) > 1 \(\dfrac{a}{b}\) < 1
TH1: \(\dfrac{a}{b}\) =1 \(\Leftrightarrow a=b\) thì \(\dfrac{a+n}{b+n}\)thì\(\dfrac{a+n}{b+n}\) =\(\dfrac{a}{b}\) = 1
TH2: \(\dfrac{a}{b}>1\Leftrightarrow a+m>b+n\)
Mà \(\dfrac{a+n}{b+n}\) có phần thừa so với 1 là \(\dfrac{a-b}{b}\)vì \(\dfrac{a-b}{b+n}< \dfrac{a-b}{b}\) nên \(\dfrac{a+n}{b+n}< \dfrac{a}{b}\)
TH3: \(\dfrac{a}{b}< 1\Leftrightarrow a+n< b+n\)
Khi đó \(\dfrac{a+n}{b+n}\) có phần bù tới 1 là \(\dfrac{a-b}{b}\), \(\dfrac{a-b}{b}< \dfrac{b-a}{bb+n}\)
nên \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\)
b. Cho A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và A < 1 nên theo a, nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a+n}{b+n}>\dfrac{a}{b}\Rightarrow A< \dfrac{\left(10^{11}-1\right)+11}{\left(10^{12}-1\right)+11}=\dfrac{10^{11}+10}{10^{12}+10}\)Do đó \(A< \dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{12}+1\right)}\)Vậy A<B
Câu 3: Đặt B1 = a1
B2= a1+a2
B3= a1+a2+a3
còn lại làm tương tự như trên đến B10 = a1+a2+ ...+ a10
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm).
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư \(\in\) { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2
số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) \(\Rightarrow\) ĐPCM.
a: Để A là phân số thì (n-3)(n+2)<>0
hay \(n\notin\left\{3;-2\right\}\)
b: Để A không là phân số thì (n-3)(n+2)=0
=>n=3 hoặc n=-2
c: Khi n=-13 thì \(A=\dfrac{4}{\left(-13-3\right)\left(-13+2\right)}=\dfrac{4}{\left(-16\right)\cdot\left(-11\right)}=\dfrac{1}{44}\)
Khi n=0 thì \(A=\dfrac{4}{\left(-3\right)\cdot2}=\dfrac{-2}{3}\)
Bài 1:
a) Ta có:
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
b) Ta có:
\(71^{50}=\left(71^2\right)^{25}=5041^{25}\)
\(37^{75}=\left(37^3\right)^{25}=50653^{25}\)
Vì \(5041^{25}< 50653^{25}\Rightarrow71^{50}< 37^{75}\)
c) Ta có:
\(\frac{201201}{202202}=\frac{201.1001}{202.1001}=\frac{201}{202}\)
\(\frac{201201201}{202202202}=\frac{201.1001001}{202.1001001}=\frac{201}{202}\)
\(\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)
Bài 2:
a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\)
Ta có: \(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1+1-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
b) \(B=2^1+2^2+2^3+...+2^{30}\) (Có 30 số hạng)
\(\Rightarrow B=\left(2^1+2^2+...+2^5+2^6\right)+\left(2^7+2^8+2^9+...+2^{12}\right)+...+\left(2^{25}+2^{26}+...+2^{29}+2^{30}\right)\)
(có \(30:6=5\) nhóm)
\(\Rightarrow B=1\left(2^1+2^2+...+2^6\right)+2^6\left(2^1+2^2+...+2^6\right)+.....+2^{24}\left(2^1+2^2+...+2^6\right)\)
\(\Rightarrow B=1.126+2^6.126+2^{12}.126+...+2^{24}.126\)
\(\Rightarrow B=126.\left(1+2^6+2^{12}+...+2^{24}\right)\)
\(\Rightarrow B=21.6.\left(1+2^6+2^{12}+...+2^{24}\right)⋮21\)
\(\Rightarrow B⋮21\)
đó giúp mk đi mà
à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đó
giúp mk nha
cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )
b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1
Ta có: \(S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)
\(=\frac{b}{a}x+\frac{c}{a}z+\frac{a}{b}x+\frac{c}{b}y+\frac{a}{c}z+\frac{b}{c}y\)
\(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)
\(=x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)
Vì \(\frac{b}{a}+\frac{a}{b}\ge2;\frac{c}{b}+\frac{b}{c}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow S_1+S_2+S_3\ge2x+2y+2z=2\left(x+y+z\right)=2.5=10\)
Vậy S1 + S2 + S3 \(\ge\)10
1.
S1+S2+S3= \(x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\) (1)
Xét \(\left(u-t\right)^2=\left(u-t\right)\left(u-t\right)=u^2+t^2-2ut\)
Vì \(\left(u-t\right)^2\ge0\Rightarrow u^2+t^2-2ut\ge0\Rightarrow u^2+t^2\ge2ut\)
Áp dụng vào biểu thức (1) có
S1+S2+S3= \(x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\) \(\ge x\cdot2\sqrt{\frac{ab}{ba}}+y\cdot2\sqrt{\frac{bc}{cb}}+z\cdot2\sqrt{\frac{ac}{ca}}=2x+2y+2z=2\left(x+y+z\right)=2\cdot5=10\)
Vậy S1+S2+S3\(\ge10\)(đpcm)
Dấu "=" xảy ra khi a=b=c (> 0)
2.
\(M=\frac{21x+3}{6x+4}=\frac{3\left(7x+1\right)}{2\left(3x+2\right)}\)
Để M rút gọn được thì ta có 4 trường hợp sau
*TH1: \(3⋮\left(3x+2\right)\)
\(\Rightarrow\left(3x+2\right)\inƯ\left(3\right)=\left\{1;3\right\}\)\(\Rightarrow x=\left\{-\frac{1}{3};\frac{1}{3}\right\}\left(loại\right)\)
*TH2: \(\left(7x+1\right)⋮2\Rightarrow\left(7x+1\right)\)là số tự nhiên chẵn
Cho (7x+1) = 2k \(\left(k\in N\right)\) => \(x=\frac{2k-1}{7}\)
Vậy với x = \(\frac{2k-1}{7}\)và (2k-1) là B(7) thì M có thể rút gọn được
*TH3: \(3\left(7x+1\right)⋮\left(3x+2\right)\Leftrightarrow21x+14-11⋮\left(3x+2\right)\Rightarrow\left(3x+2\right)\inƯ\left(11\right)=\left\{1;11\right\}\)
\(\Rightarrow x=\left\{-\frac{1}{3};3\right\}\)
Vậy x=3
*TH4 ( mẫu số lúc này chia hết cho tử, bạn tự khai triển ra sẽ có kết quả như TH3)
Kết luận : với khi x=3 hoặc x = \(\frac{2k-1}{7}\)và (2k-1) là B(7) thì M có thể rút gọn được
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\)
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{b+c+a}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)