\(a;b;c\in\left[1;2\right]\).CMR:

\(\left(a+b+c\r...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

ta co 

(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))<=10

<=>\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)(1)\(\le7\)

That vay ta co

Do a,b,c co vai tro nhu nhau nen ta gia su a>=b>=c 

=>(a-b)(b-c)>=0

=> ab+bc>=b2+ac

Do a,b,c khac 0 

=>\(\hept{\begin{cases}1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\\1+\frac{a}{c}\ge\frac{b}{c}+\frac{a}{b}\end{cases}}\)

=> 2+2(\(\frac{c}{a}+\frac{a}{c}\))>=(1)

Do a,b,c thuoc [1;2]

=> a/c<=2; c/a<=1/2

=>\(\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)

=>\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\le7\)

=> (a+b+c)(1/a+1/b+1/c)<=10

Ta có (a+b+c)(1/a+1/b+1/c)=3+a/b + a/c + b/a + b/c + c/a + c/b ≤ 10 

<=> a/b+b/a+b/c+c/a+c/b ≤ 7

Giả sử 1 ≤ c ≤ b ≤ a ≤ 2 thì:

(1 - a/b)(1 - b/c) + (1 - b/a)(1 - c/b) ≥ 0

<=> 2 + a/c + c/a ≥ a/b + b/a + b/c + c/b 

<=> 2+2(a/c+c/a) ≥ a/b + a/c + b/a + b/c + c/a + c/b 

Do 1≤ a,c ≤2

=> 1/2≤ a/c ≤ 2 

=>  (a/c-2)(a/c-1/2) ≤ 0 

=>  a/c+c/a ≤ 5/2 

Mà 2+2(a/c+c/a) ≥ a/b + a/c + b/a + b/c + c/a + c/b  

=> 7 ≥ a/b + a/c + b/a + b/c + c/a + c/b   

=> (a+b+c)(1/a+1/b+1/c) ≤ 10

6 tháng 10 2017

2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\)\(VP=\left(ax+by\right)^2\)

tính hiệu của cả VT và VP

suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)

\(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)

3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)

biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0

\(\Rightarrow\) Đpcm

24 tháng 6 2017

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)

\(\Leftrightarrow\dfrac{a+b}{a}\times\dfrac{b+c}{b}\times\dfrac{a+c}{c}=8\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\)

~*~*~*~*~

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)

\(=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\) (1)

\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{b}{b+c}-\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{c}{c+a}-\dfrac{ac}{\left(c+a\right)\left(a+b\right)}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\left(1-\dfrac{b}{b+c}\right)+\dfrac{b}{b+c}\left(1-\dfrac{c}{c+a}\right)+\dfrac{c}{a+c}\left(1-\dfrac{a}{a+b}\right)\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a}{a+b}\times\dfrac{c}{b+c}+\dfrac{b}{b+c}\times\dfrac{a}{a+c}+\dfrac{c}{a+c}\times\dfrac{b}{a+b}\)

\(=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}=\dfrac{3}{4}\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)=\dfrac{3}{4}\times8abc\)

\(\Leftrightarrow ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)+2abc=8abc\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=8abc\) luôn đúng

=> (1) đúng

24 tháng 6 2017

Bạn cũng có thể giải bằng cách đặt \(x=\dfrac{a}{a+b};y=\dfrac{b}{b+c};z=\dfrac{c}{a+c}\).

AH
Akai Haruma
Giáo viên
3 tháng 11 2017

Lời giải:

\(\text{VT}=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-c)(b-a)}+\frac{1}{c(c-a)(c-b)}\)

\(=\frac{bc(c-b)}{abc(a-b)(b-c)(c-a)}+\frac{ac(a-c)}{abc(a-b)(b-c)(c-a)}+\frac{ab(b-a)}{abc(a-b)(b-c)(c-a)}\)

\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{abc(a-b)(b-c)(c-a)}\) (1)

Xét \(bc(c-b)+ac(a-c)+ab(b-a)=bc(c-b)-ac[(c-b)+(b-a)]+ab(b-a)\)

\(=(c-b)(bc-ac)+(b-a)(ab-ac)=c(c-b)(b-a)+a(b-a)(b-c)\)

\(=(c-b)(b-a)(c-a)=(a-b)(b-c)(c-a)\) (2)

Từ \((1),(2)\Rightarrow \text{VT}=\frac{(a-b)(b-c)(c-a)}{abc(a-b)(b-c)(c-a)}=\frac{1}{abc}\)

Ta có đpcm.

8 tháng 12 2017

2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

<=> (ab+bc+ca)(a+b+c)=abc

<=> (ab+bc+ca)(a+b+c)-abc=0

<=> (a+b)(b+c)(c+a) = 0

<=> a+b=0 hoặc b+c=0 hoặc c+a=0

<=> a=-b hoặc b=-c hoặc c = -a

sau đó thay vào cái cần c/m

8 tháng 12 2017

bài 1 nhá

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

26 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a^3\cdot\dfrac{1}{a}+b^3\cdot\dfrac{1}{b}+c^3\cdot\dfrac{1}{c}\right)^2\)

\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a^2+b^2+c^2\right)^2\)

Cần chỉ ra \(\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge a+b+c\left(a,b,c>0\right)\)

Đẳng thức xảy ra khi \(a=b=c=1\)

26 tháng 4 2017

Cauchy-Schwarz 2 bộ (left(sqrt{a^3};sqrt{b^3};sqrt{c^3} ight);left(sqrt{dfrac{1}{a}};sqrt{dfrac{1}{b}};sqrt{dfrac{1}{c}} ight))

(left(a^3+b^3+c^2 ight)left(dfrac{1}{a}+dfrac{1}{b}+dfrac{1}{c} ight)geleft(sqrt{dfrac{a^3.1}{a}}+sqrt{dfrac{b^3.1}{b}}+sqrt{dfrac{c^3.1}{c}} ight)^2)

(Leftrightarrowleft(a^3+b^3+c^2 ight)left(dfrac{1}{a}+dfrac{1}{b}+dfrac{1}{c} ight)geleft(a^2+b^2+c^2 ight)^2)

Bđt cần c/m tương đương với :

(left(a^2+b^2+c^2 ight)^2geleft(a+b+c ight)^2)

(Leftrightarrow a^2+b^2+c^2ge a+b+c) ( vì a,b,c > 0 )

Phản đề :

Xét bộ (left(a;b;c ight)=left(dfrac{1}{4};dfrac{1}{4};dfrac{1}{4} ight))

(Leftrightarrowdfrac{3}{16}gedfrac{3}{4}left(sai ight))

Vậy bđt cần cm không tồn tại với a , b , c > 0

23 tháng 12 2018

1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)