\(\in\left[0;2\right]\) và a + b + c = 3. CMR :

\(3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

*)Chứng minh \(a^2+b^2+c^2\ge3\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge9\Leftrightarrow a^2+b^2+c^2\ge3\)

Xảy ra khi \(a=b=c=1\)

*)Chứng minh \(a^2+b^2+c^2\le5\)

Từ \(a,b,c\in\left[0;2\right]\)\(\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\le0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)-abc+8\le0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-abc\le4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\le4\)

\(\Leftrightarrow\left(a+b+c\right)^2-a^2+b^2+c^2\le4\)

\(\Leftrightarrow a^2+b^2+c^2\le5\)

Xảy ra khi \(a=2;b=1;c=0\) và hoán vị

1 tháng 6 2018

Cho mk hỏi abc = ? v bn

NV
6 tháng 2 2020

Không mất tính tổng quát, giả sử \(a=max\left\{a;b;c\right\}\)

\(\Rightarrow3\le3a\Rightarrow a\ge1\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)

Ta có:

\(a^2+b^2+c^2\le a^2+\left(b+c\right)^2=a^2+\left(3-a\right)^2\)

\(=2a^2-6a+9=2\left(a^2-3a+2\right)+5=2\left(a-1\right)\left(a-2\right)+5\le5\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và các hoán vị

6 tháng 2 2020

Từ \(a,b,c\in\left[0;2\right]\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\le0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)-abc+8\le0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-abc\le4\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\le4\)

\(\Leftrightarrow\left(a+b+c\right)^2-a^2+b^2+c^2\le4\)

\(\Leftrightarrow a^2+b^2+c^2\le5\)

Xảy ra khi \(\text{a=2;b=1;c=0}\) và hoán vị

11 tháng 8 2016

Bđt Bu-nhia-cop-xki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\), đẳng thức xảy ra khi \(ay=bx\)

a.

\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)=5^2\)

\(\Rightarrow-5\le2x+3y\le5\)

b.

\(\sqrt{a+c}.\sqrt{b+c}+\sqrt{a-c}.\sqrt{b-c}\le\sqrt{a+c+a-c}.\sqrt{b+c+b-c}\)

\(=\sqrt{2a}.\sqrt{2b}=2\sqrt{ab}\)

Dấu bằng xảy ra khi \(\frac{\sqrt{a+c}}{\sqrt{a-c}}=\frac{\sqrt{b+c}}{\sqrt{b-c}}\), hay \(a=b\)

Thử lại với a = b thì \(VT=2a=2\sqrt{ab}=VP>\sqrt{ab}\) nên đề đã ra sai vế phải của bđt.

c.

bđt \(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

d.

bđt \(\Leftrightarrow\left(a+c\right)^2+\left(b+d\right)^2\le a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\)

\(\Leftrightarrow ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

bđt trên luôn đúng vì theo bđt Bu-nhia-cop-xki, ta có:

\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\sqrt{\left(ac+bd\right)^2}=\left|ac+bd\right|\ge ac+bd\)

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

2 tháng 5 2017

từ gt \(\Rightarrow\)abc>0  => (2-a)(2-b)(2-c)>0 => 
8+2(ab+bc+ca)−4(a+b+c)−abc≥0 => 2(ab+bc+ca) \(\ge\)4 + abc \(\ge\)4
=> (a+b+c)^2≥4+a2+b2+c2 => a^2+b^2+c^2 \(\le\) 5
 

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Bài 1:

a) Ta thấy:

\(x^4-2x^3+2x^2-2x+1=(x^4-2x^3+x^2)+(x^2-2x+1)\)

\(=(x^2-x)^2+(x-1)^2\geq 0, \forall x\in\mathbb{R}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-x=0\\ x-1=0\end{matrix}\right.\) hay $x=1$

b) Đề sai với $a=0,5; b=2,3; c=0,2$. Nếu đề bài của bạn giống bài dưới đây, tham khảo nó tại link sau:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến