\(\in\left(0;1\right)\)CMR:

\(\sqrt{abc}+\sqrt{\left(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Với \(x\in\left(0;1\right)\) thì luôn có \(x^{\frac{1}{2}}< x^{\frac{1}{3}}\Leftrightarrow\sqrt{x}< \sqrt[3]{x}\)

Hay \(\sqrt{abc}< \sqrt[3]{abc}\). Áp dụng BĐT AM-GM ta có:

\(\sqrt{abc}< \sqrt[3]{abc}\le\frac{a+b+c}{3}\)

\(\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}< \sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)

\(\le\frac{\left(1-a\right)+\left(1-b\right)+\left(1-c\right)}{3}\)

Cộng theo vế 2 BĐT trên ta có:

\(VT< \frac{a+b+c+1-a+1-b+1-c}{3}=1\)

12 tháng 6 2020

Ta có tính chất: \(\sqrt{x+y}< \sqrt{x}+\sqrt{y}\left(x,y>0\right)\) 

Thật vậy, với x, y > 0, ta có: \(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}>x+y\)

\(\Rightarrow\sqrt{x}+\sqrt{y}>\sqrt{x+y}\)

Áp dụng BĐT Cauchy-Schwarz và sử dụng tính chất trên, ta được: \(\left(\sqrt{abc}+\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\right)^2\)\(=\left(\sqrt{a}.\sqrt{bc}+\sqrt{1-a}.\sqrt{\left(1-b\right)\left(1-c\right)}\right)^2\)\(\le\left[a+\left(1-a\right)\right]\left[bc+\left(1-b\right)\left(1-c\right)\right]=bc+\left(1-b\right)\left(1-c\right)\)

\(\Rightarrow\sqrt{abc}+\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\le\sqrt{bc+\left(1-b\right)\left(1-c\right)}\)\(< \sqrt{bc}+\sqrt{\left(1-b\right)\left(1-c\right)}\)(1)

Mặt khác: \(\left(\sqrt{bc}+\sqrt{\left(1-b\right)\left(1-c\right)}\right)^2\le\left[b+\left(1-b\right)\right]\left[c+\left(1-c\right)\right]\)\(=1\)

\(\Rightarrow\sqrt{bc}+\sqrt{\left(1-b\right)\left(1-c\right)}\le1\)(2)

Từ (1) và (2) suy ra\(\sqrt{abc}+\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}< 1\left(q.e.d\right)\)

5 tháng 4 2016

gia su 0<a<=b<=c<1 thi 0<1-c<=1-b<=1-a<1

suy ra \(\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\) <\(\sqrt{\left(1-a\right)\left(1-a\right).1}\)=1-a

tuong tu vs can con lai.ta dk \(\sqrt{abc}\)<a suy ra dpcm

28 tháng 11 2017

\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)

\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)

\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)

\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

10 tháng 12 2017

\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}.\)

\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)

\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)

\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

12 tháng 10 2017

ĐỀ thi hsg toán 9 hải phòng năm 2016-2017

12 tháng 10 2017
thiệt ah
NV
1 tháng 3 2020

Sử dụng BĐT: \(\left(x+y+z\right)^3\ge27xyz\Rightarrow\left(\frac{x+y+z}{3}\right)^3\ge xyz\)

\(\Rightarrow\left(\frac{1+a+1+b+1+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế với vế:

\(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu "=" 3 BĐT trên xảy ra khi \(a=b=c\)

Lại có:

\(1+\sqrt[3]{abc}\ge2\sqrt{\sqrt[3]{abc}}\Rightarrow\left(1+\sqrt[3]{abc}\right)^3\ge\left(2\sqrt{\sqrt[3]{abc}}\right)^3=8\sqrt{abc}\)Dấu "=" xảy ra khi \(a=b=c=1\)

22 tháng 4 2020

jh hutn jnoh lhgvhx

22 tháng 4 2020

Ta có : 2(a2  + b2 ) - ( a + b) -a2 -2ab + b2 =( a-b)\(\ge0\)

=> 2(a2 + b2 ) \(\ge\left(a+b\right)^2\)

tương tự : 2(b2 +c2 ) \(\ge\)( b + c)2 

                   2 (c2 + a2\(\ge\)( c + a)2 

=> P \(\le\frac{c}{a+b+1}+\frac{a}{b+c+1}+\frac{b}{c+a+1}\)

\(\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}\)( do  a ,b, c \(\le1\))

\(\frac{a+b+c}{a+b+c}=1\)

Vậy Max P = 1 <=> a = b = c =1

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

12 tháng 10 2018

Ta c/m bđt

với \(x,y,z\ge1\) thì: \(\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\ge\frac{6\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}\) (*)

dấu bằng xảy ra khi x=y=z

bđt (*) \(\Leftrightarrow\left(\frac{x+y}{1+z}+1\right)+\left(\frac{y+z}{1+x}+1\right)+\left(\frac{z+x}{1+y}+1\right)\ge\frac{6\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}+3\)

\(\Leftrightarrow\left(x+y+z+1\right)\left(\frac{1}{1+z}+\frac{1}{1+x}+\frac{1}{1+y}\right)\ge\frac{3+9\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}\)

Ta có: \(1+x+y+z\ge1+3\sqrt[3]{xyz}\)(1)

Với \(x,y\ge1\) ta chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}}\)(2)

\(\Leftrightarrow\frac{2+\left(x+y\right)}{1+\left(x+y\right)+xy}\ge\frac{2}{1+\sqrt{xy}}\Leftrightarrow2+\left(x+y\right)+2\sqrt{xy}+\sqrt{xy}\left(x+y\right)\ge2+2\left(x+y\right)+2xy\)

\(\Leftrightarrow2\sqrt{xy}\left(1-\sqrt{xy}\right)+\left(x+y\right)\left(\sqrt{xy}-1\right)\ge0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\ge0\)

bđt trên luôn đúng =>DPCM

đợi mình làm vế sau nữa nhé tại máy lag nên làm đk đến đây thôi xíu nữa hoặc mai mik làm vế sau cho nhé

12 tháng 10 2018

Với \(x,y,z\ge1\) ta chứng minh: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\) (3)

\(\Leftrightarrow P=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{4}{1+\sqrt[3]{xyz}}\)

Áp dụng kết quả (2) ta thu được:

\(P\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{z\sqrt[3]{xyz}}}\ge\frac{4}{1+\sqrt[4]{xyz\sqrt[3]{xyz}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

Từ (1) và (3) suy ra (*) đúng

Trở lại bài toán: ta được bđt đã cho tưởng đương với:

\(\frac{\frac{1}{b}+\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}+\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{a}+\frac{1}{b}}{1+\frac{1}{c}}\ge\frac{\frac{6}{\sqrt[3]{abc}}}{1+\frac{1}{\sqrt[3]{abc}}}\)

Do x,y,z\(\le1\Rightarrow\frac{1}{x},\frac{1}{y},\frac{1}{z}\ge1\). Áp dụng (*) suy ra điều phải chứng minh dấu bằng xảy ra khi a=b=c