Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\left\{\begin{matrix}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\end{matrix}\right.\)
Cộng theo từng vế:
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) ( đpcm )
Với a , b , c > 0
Ta có: \(a^2-2ab+b^2\ge0\)
\(\Rightarrow\) \(a^2+2ab+b^2\ge4ab\)
\(\Rightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\) \(\frac{a+b}{4ab}\ge\frac{1}{a+b}\)
\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4b}+\frac{1}{4a}\)
\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(1)
Chứng minh tương tự ta cũng có được:
\(\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\) (2)
và \(\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\) (3)
Cộng (1), (2), (3) vế theo vế ta được:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(\Rightarrow\) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( ĐPCM)
Trước hết ta chứng minh:\(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) (1)
Thật vậy: bất đẳng thức tương đương với:
\(\frac{1}{a+b}\le\frac{1}{4}\frac{a+b}{ab}\)
\(\Leftrightarrow4ab\le\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (Đúng)
Vậy (1) được chứng minh.
Tương tự: \(\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\) (2)
\(\frac{1}{c+a}\le\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\) (3)
Cộng vế với vế của (1), (2), (3) suy ra:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\cdot2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Đpcm
/(a+b+1)+1/(b+c+1)+1/(c+a+1) ≤ 1
<=> (a+b+1)(b+c+1) + (b+c+1)(c+a+1) + (c+a+1)(a+b+1) ≤ (a+b+1)(b+c+1)(c+a+1)
<=> (a+b)(b+c)+a+b+b+c+1 + (b+c)(c+a)+b+c+c+a+1 + (c+a)(a+b)+c+a+a+b+1
≤ (a+b)(b+c)(c+a) + (a+b)(b+c) + (b+c)(c+a) + (c+a)(a+b) +a+b+b+c+c+a+1
<=> 2+2(a+b+c) ≤ (a+b)(b+c)(c+a)
<=> 2+2(a+b+c) ≤ (a+b+c)(ab+bc+ca) - abc
<=> 3 ≤ (a+b+c)(ab+bc+ca-2)
Áp dụng bất đẳng thức Cauchy:
(a+b+c)(ab+bc+ca-2) ≥ 3.³√(abc) .[3³√(ab.bc.ca) -2] = 3
=> đpcm
Đẳng thức xảy ra <=> a=b=c=1
Bạn tham khảo:
Câu hỏi của Phạm Minh anh - Toán lớp 9 | Học trực tuyến
Câu hỏi của Ngoc An Pham - Toán lớp 9 | Học trực tuyến
bạn giải thích cặn kẽ hơn giúp mình cách làm đấy đc ko ? ( Giải đc theo cách lớp 8 thì càng tốt nhé !! )
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\Rightarrow3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\le0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
\(\sum\frac{1}{a+a+a+a+b+c}\le\frac{1}{36}\sum\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{6}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1\)
Nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{42}{42}\)
Suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< =\frac{41}{42}\) ( đpcm )