K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

Đặt a/2003 = b/2004 = c/2005 = k

=> a=2003k

b=2004k

c=2005k

Thay các giá trị a,b,c trên vào  4(a-b)(b-c) = (c-a)2.Ta có:

4(a-b)(b-c)=4(2003k - 2004k)(2004k-2005k)=4.(-1k).(-1k)=4k2       (1)

(c-a)=(2005k-2003k)2=(2k)2= 4k2               (2)

Từ (1) và (2) suy ra 4(a-b)(b-c) = (c-a)2

(k) đúng cho mình nhé!

nhưng sao cách giải bài

này lai thế mình

có cách giải khác

mà tuy ko giống nhưng giống

kết qyar

24 tháng 8 2016

1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)

a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)

a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)

+ Với a/b < 1 <=> a/b < a+1/b+1

+ Với a/b = 1 <=> a/b = a+1/b+1

+ Với a/b > 1 <=> a/b > a+1/b+1

2) lm tương tự bài 1

24 tháng 8 2016

1) Trường hợp a cũng là nguyên duơng 
Xét a<b và a>b. 
Xét a<b trước, ta có: 
1-a/b=(b-a)/a..............(1) 
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1... 
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b 

19 tháng 6 2019

cho hỏi chút

\(\frac{a}{b}=\frac{c}{d}\)

trong đó

\(a=c\) hay \(a\ne c\)

\(b=d\) hay \(b\ne d\)

( bài có thiếu điều kiện ko vậy )

8 tháng 11 2021

Bài 2: ta thấy A và B ở vị trí trong cùng phía , A + B = 180 độ =>a//b(1)

Ta lại thấy B , C ở vị trí đồng vị , B=C=70 độ =>b//c(2)

Từ 1,2 =>a//b//c

20 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

20 tháng 10 2016

theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\ cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)

17 tháng 8 2018

Huhu chúng ta cùng cảnh  ngộ

18 tháng 8 2018

uk . mk thấy bạn đăng nhưng ko ai trả lời thì mk đăng hộ vs cả bài này mk cũng biết làm hihi