K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a-2c}{3b-2d}\)

a/ \(\dfrac{a.c}{b.d}=\dfrac{\left(a+c\right).\left(a-c\right)}{\left(b+d\right).\left(b-d\right)}=\dfrac{a^2-c^2}{b^2-d^2}\)

b/ \(\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{3a-2c}{3b-2d}=\dfrac{3a^2-2ac}{3b^2-2bd}\)

18 tháng 8 2018

mấy bạn giải giúp mk vs

a: \(=x^2-10x+25+y^2+2y+1=\left(x-5\right)^2+\left(y+1\right)^2\)

b: \(=\left(x+y\right)^2-16\)

c: \(=a^2-2ac+c^2-\left(b^2-2bd+d^2\right)\)

\(=\left(a-c\right)^2-\left(b-d\right)^2\)

d: \(=\left(a-c\right)^2-b^2\)

f: \(=4a^2+4ab+b^2+b^2-2b+1\)

\(=\left(2a+b\right)^2+\left(b-1\right)^2\)

3 tháng 1 2020

Ta có:

\(c+d=4\)

\(\Rightarrow\left(c+d\right)^2=4^2\)

\(\Rightarrow c^2+2cd+d^2=16\)

\(\Rightarrow4a^2+b^2+c^2+2cd+d^2=2+16=18\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(4a^2+c^2\ge2.2a.c=4ac\)

\(b^2+d^2\ge2bd\)

\(\Rightarrow4a^2+b^2+c^2+d^2\ge4ac+2bd\)

\(\Rightarrow4a^2+b^2+c^2+2cd+d^2\ge4ac+2bd+2cd\)

\(\Rightarrow18\ge4ac+2bd+2cd\left(theo\left(1\right)\right)\)

\(\Rightarrow18\ge2\left(2ac+bd+cd\right)\)

\(\Rightarrow9\ge2ac+bd+cd\)

\(\Rightarrow2ac+bd+cd\le9\)

\(\Rightarrow A_{max}=9\Leftrightarrow2a=c;b=d\)

Để max đúng 

4 tháng 10 2020

BẠN LÀM SAI RỒI phải tìm rõ cả a,b,c,d 

Nếu ko lm sao có dấu bằng xảy ra

vì hệ pt 4a2+b2=2 c=d

              c+d=4; 2a=b

vô nghiệm

4 tháng 4 2017

uh đúng rồi
tag t zô chi?

4 tháng 4 2017

nhờ bà coi thử đúng hay ko ấy mà hehe

NV
13 tháng 5 2019

\(P=\left(b+c+d\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=1+\frac{b}{c}+\frac{b}{d}+\frac{c}{b}+1+\frac{c}{d}+\frac{d}{b}+\frac{d}{c}+1\)

\(=3+\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}\)

Mặt khác do \(b\le c\le d\Rightarrow\left(d-c\right)\left(c-b\right)\ge0\)

\(\Leftrightarrow cd-bd-c^2+bc\ge0\Leftrightarrow bc+cd\ge c^2+bd\)

\(\Leftrightarrow\frac{bc+cd}{cd}\ge\frac{c^2+bd}{cd}\Leftrightarrow\frac{b}{d}+1\ge\frac{c}{d}+\frac{b}{c}\)

\(\frac{bc+cd}{bc}\ge\frac{c^2+bd}{bc}\Leftrightarrow\frac{d}{b}+1\ge\frac{c}{b}+\frac{d}{c}\)

\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}+2\ge\frac{b}{c}+\frac{c}{d}+\frac{c}{b}+\frac{d}{c}\)

\(\Leftrightarrow2\left(\frac{b}{d}+\frac{d}{b}\right)+2\ge\frac{b}{c}+\frac{b}{d}+\frac{c}{d}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}=P\)

\(a\le b\le d\le2a\Rightarrow\left\{{}\begin{matrix}\frac{1}{2}\le\frac{b}{d}\le1\\1\le\frac{d}{b}\le2\end{matrix}\right.\)

\(\Rightarrow\left(\frac{b}{d}-1\right)\left(\frac{d}{b}-2\right)\ge0\Leftrightarrow1-2\frac{b}{d}-\frac{d}{b}+2\ge0\)

\(\Leftrightarrow\frac{b}{d}+\frac{d}{b}\le3-\frac{b}{d}\le3-\frac{1}{2}=\frac{5}{2}\)

\(\Rightarrow P\le2.\frac{5}{2}+2=7\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=c=a\\d=2a\end{matrix}\right.\)

3 tháng 6 2019

Cảm ơn ạ