Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bđ: \(\frac{12b}{bcd+4bc+12b+24}=\frac{12ab}{abcd+4abc+12ab+24a}=\frac{12ab}{24+4abc+12ab+24a}=\frac{3ab}{abc+3ab+6a+6}\)
Tương tự: \(\frac{4c}{cda+cd+4c+12}=\frac{4abc}{a^2bcd+abcd+4abc+12ab}=\frac{4abc}{24a+24+4abc+12ab}=\frac{abc}{abc+3ab+6a+6}\)
Rồi bạn cộng vế với vế là ra kết quả bằng 1
Và: \(\frac{2d}{dab+2da+2d+8}=\frac{2abcd}{a^2b^2cd+2a^2bcd+2abcd+8abc}=\frac{48}{24ab+48a+48+8abc}=\frac{6}{abc+3ab+6a+6}\)
Cái chỗ " Rồi bạn cộng vế với vế là ra kết quả bằng 1" bạn cho xuống cuối dòng nhé
Dùng biến đổi tương đương:
a/ \(a^2+b^2+c^2+d^2+16\ge4a+4b+4c+4d\)
\(\Leftrightarrow a^2-4a+4+b^2-4b+4+c^2-4c+4+d^2-4d+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2+\left(c-2\right)^2+\left(d-2\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
Dấu "=" xảy ra khi \(a=b=c=d=2\)
b/ \(a^2+b^2\ge a+b-\frac{1}{2}\)
\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Dấu "=" khi \(a=b=\frac{1}{2}\)
ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)
\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)
\(=\frac{8ab}{a^4b^4-16}\)
b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)
=> (a2 + 4).9 = a2(b2 + 9)
=> 9a2 + 36 = a2b2 + 9a2
=> a2b2 = 36
=> (ab)2 = 36
=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)
Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)
Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)
Do a ; b ; c > 0 ( GT )
Áp dụng BĐT phụ \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\) , ta có :
\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
Lại có : \(\frac{1}{4a+b+c}=\frac{1}{a+a+a+a+b+c}\le\frac{1}{36}\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)
( áp dụng BĐT phụ \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+\frac{1}{a4}+\frac{1}{a5}+\frac{1}{a6}\ge\frac{36}{a1+a2+a3+a4+a5+a6}\) )
CMTT , ta có : \(\frac{1}{4b+a+c}\le\frac{1}{36}\left(\frac{4}{b}+\frac{1}{a}+\frac{1}{c}\right);\frac{1}{4c+a+b}\le\frac{1}{36}\left(\frac{4}{c}+\frac{1}{a}+\frac{1}{b}\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{1}{4a+b+c}+\frac{1}{4b+a+c}+\frac{1}{4c+a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}.1=\frac{1}{6}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=3\)
Áp dụng bđt Cauchy-Schwarz:
\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c
\(\Leftrightarrow\frac{4a}{4a+3bc}+\frac{4b}{4b+3ac}+\frac{4c}{4c+3ab}\le2\)
\(\Leftrightarrow\frac{bc}{4a+3bc}+\frac{ac}{4b+3ac}+\frac{ab}{4c+3ab}\ge\frac{1}{3}\)
Thật vậy, ta có:
\(VT=\frac{b^2c^2}{4abc+3b^2c^2}+\frac{a^2c^2}{4abc+3a^2c^2}+\frac{a^2b^2}{4abc+3a^2b^2}\)
\(VT\ge\frac{\left(ab+bc+ca\right)^2}{3\left(a^2b^2+b^2c^2+c^2a^2\right)+12abc}=\frac{a^2b^2+b^2c^2+c^2a^2+2\left(a+b+c\right)abc}{3\left(a^2b^2+b^2c^2+c^2a^2+4abc\right)}\)
\(VT\ge\frac{a^2b^2+b^2c^2+c^2a^2+4abc}{3\left(a^2b^2+b^2c^2+c^2a^2+4abc\right)}=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)
mik ko bít
I don't now
................................
.............