K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

cắt NH tại Q chứ ko phải tại O

5 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đặt OB = OD = a. Hãy chứng minh OE = a. Tương tự, OF = OG = OH = a. Từ đó suy ra sáu điểm E, B, F, G, D, H cùng thuộc một đường tròn (O;a).

19 tháng 4 2023

a) Ta có : \(\hat{A}=90^o\) (góc nội tiếp chắn nửa đường tròn (O), đường kính BC).

\(\hat{E}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

\(\hat{F}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

Suy ra, AHEF là hình chữ nhật (dấu hiệu nhận biết) (điều phải chứng minh).

b) Ta có : \(\hat{HAC}+\hat{C}=90^o\) (hai góc phụ nhau) và \(\hat{ABC}+\hat{C}=90^o\) (hai góc phụ nhau)

\(\Rightarrow\hat{HAC}=\hat{ABC}\) (điều phải chứng minh).

Mặt khác : \(\hat{AEF}=\hat{AHF}\) (hai góc nội tiếp đường tròn (I) cùng chắn cung AF).

Và : \(\left\{{}\begin{matrix}\hat{AHF}+\hat{HAC}=90^o\\\hat{C}+\hat{HAC}=90^o\end{matrix}\right.\Rightarrow\hat{AHF}=\hat{C}\). Suy ra : \(\hat{AEF}=\hat{C}\).

Lại có : \(\hat{AEF}+\hat{BEF}=180^o\) (hai góc kề bù) \(\Rightarrow\hat{C}+\hat{BEF}=180^o\).

Mà trong tứ giác BEFC, hai góc trên lại đối nhau. Do đó, tứ giác BEFC nội tiếp được một đường tròn (điều phải chứng minh).

a: góc ABC=1/2*sđ cung AC=90 độ

góc ABD=1/2*180=90 độ

góc CBD=góc ABC+góc ABD=90+90=180 độ

=>C,B,D thẳng hàng

b: góc AFC=1/2*sđ cung AC=90 độ

=>CF vuông góc AD

góc AED=1/2*180=90 độ

=>DE vuông góc AC

góc CED=góc CFD=90 độ

=>CEFD nội tiếp