\(\dfrac{a+c}{b+a}+\dfrac{b+d}{b+c}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2021

\(VT=\dfrac{\left(a+c\right)^2}{\left(a+c\right)\left(a+b\right)}+\dfrac{\left(b+d\right)^2}{\left(b+c\right)\left(b+d\right)}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)\left(c+d\right)}+\dfrac{\left(d+b\right)^2}{\left(d+a\right)\left(d+b\right)}\)

\(VT\ge\dfrac{\left(2a+2b+2c+2d\right)^2}{\left(a+b\right)\left(a+c\right)+\left(b+c\right)\left(b+d\right)+\left(a+c\right)\left(c+d\right)+\left(a+d\right)\left(b+d\right)}=\dfrac{4\left(a+b+c+d\right)^2}{\left(a+b+c+d\right)^2}=4\)

Dấu "=" xảy ra khi \(a=b=c=d\)

11 tháng 5 2017

\(\dfrac{a+b}{a+b+c}\)>\(\dfrac{a+b}{a+b+c+d}\)

\(\dfrac{b+c}{b+c+d}\)>\(\dfrac{b+c}{b+c+d+a}\)

\(\dfrac{c+d}{c+d+a}\)>\(\dfrac{c+d}{c+d+a+b}\)

\(\dfrac{d+a}{d+a+b}\)>\(\dfrac{d+a}{d+a+b+c}\)

cộng từng vế của bất đẳng thức lại với nhau ta được

\(\dfrac{a+b}{a+b+c}\)+\(\dfrac{b+c}{b+c+d}\)+\(\dfrac{c+d}{c+d+a}\)+\(\dfrac{d+a}{d+a+b}\)>\(\dfrac{a+b}{a+b+c+d}\)+\(\dfrac{b+c}{b+c+d+a}\)+\(\dfrac{c+d}{c+d+a+b}\)+\(\dfrac{d+a}{d+a+b+c}\)=\(\dfrac{2.\left(a+b+c+d\right)}{a+b+c+d}\)=2

11 tháng 5 2017

hình như sai đề

23 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{a+d}\)

\(\ge\dfrac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}\)

\(=\dfrac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\dfrac{a+b+c+d}{2}=\dfrac{1}{2}=VP\)

Đẳng thức xảy ra khi \(a=b=c=d=\dfrac{1}{4}\)

27 tháng 3 2018

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ba+bc\)

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow a< b\)(đúng)

a)Áp dụng

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)

Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)

Từ (1) và (2)=> đpcm

27 tháng 3 2018

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có

\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+bd}+\frac{c^2}{cd+ca}+\frac{d^2}{da+db}\)

\(\geq \frac{(a+b+c+d)^2}{ab+ac+bc+bd+cd+ca+da+db}=\frac{(a+b+c+d)^2}{ab+cd+2ac+2bd+bc+da}\) (1)

Ta có:

\((a+b+c+d)^2=a^2+b^2+c^2+d^2+2ac+2bd+2(a+c)(b+d)\)

\(=a^2+b^2+c^2+d^2+2ac+2bd+2ab+2ad+2bc+2cd\)

Áp dụng BĐT AM-GM:

\(a^2+c^2\geq 2ac; b^2+d^2\geq 2bd\)

\(\Rightarrow (a+b+c+d)^2\geq 4ac+4bd+2ab+2ad+2bc+2cd\)

\(\Leftrightarrow (a+b+c+d)^2\geq 2(ab+cd+2ac+2bd+bc+da)\) (2)

Từ (1); (2) suy ra :

\(\text{VT}\geq \frac{2(ab+cd+2ac+2bd+bc+da)}{ab+cd+2ac+2bd+bc+da}=2\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=d\)

17 tháng 2 2019

Áp dụng BĐT Cauchy cho 3 số dương a , b , c , ta có :

\(D=\dfrac{a}{a+2b}+\dfrac{b}{b+2c}+\dfrac{c}{c+2a}=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{b^2+2bc}+\dfrac{c^2}{c^2+2ac}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

19 tháng 3 2018

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\)

\(\Rightarrow\dfrac{ad-bc}{bd}< 0\)

Mà \(bd>0\) (do b,d dương)

\(\Rightarrow\left\{{}\begin{matrix}ad-bc< 0\\bd>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ad< bc\\bd>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{bd}{ad}>\dfrac{bd}{bc}\)

\(\Rightarrow\dfrac{b}{a}>\dfrac{d}{c}\)

\(\rightarrowđpcm\)