Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quản lý ko duyệt vậy t copy bài của bạn Lê anh tú CTV nhé
áp dụng dãy tỉ số = nhau ta được
\(\Leftrightarrow\frac{\left(ab+ac\right)+\left(bc+ba\right)-\left(ca+cb\right)}{2+3-4}=\frac{\left(ab+ab\right)+\left(bc-bc\right)+\left(ac-ac\right)}{1}=\frac{2ab}{1}\)
tương tự
\(\frac{\left(ab+ac\right)+\left(ca+cb\right)-\left(bc+ba\right)}{2+4-3}=\frac{\left(ab-ab\right)+\left(ac+ac\right)+\left(cb-cb\right)}{3}=\frac{2ac}{3}\)
tương tự
\(\frac{\left(bc+ba\right)+\left(ca+cb\right)-\left(ab+ac\right)}{3+4-2}=\frac{\left(cb+cb\right)+\left(ba-ba\right)+\left(ca-ca\right)}{5}=\frac{2cb}{5}\)
từ 1,2,3 ta sy ra
\(\frac{2ab}{1}=\frac{2ac}{3}=\frac{2cb}{5}\)
\(\frac{2ba}{1}=\frac{2bc}{5}\) " vì 2b=2b" suy ra \(\frac{a}{1}=\frac{c}{5}\)" nhân 3 cho mẫu số của 2 vế ta được \(\frac{a}{3}=\frac{c}{15}\) " 1"
tương tự với \(\frac{2ca}{3}=\frac{2cb}{5}\) " vì 2c=2c suy ra \(\frac{a}{3}=\frac{b}{5}\) "2"
từ 1 và 2 suy ra \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Bài 1 :
Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)
Từ \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)
Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)
Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :
\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)
Chúc bạn học tốt ( -_- )
Ta có :
\(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\) \(\Leftrightarrow\) \(\left(\frac{a}{c}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{b}{d}\right)^3\) \(\Leftrightarrow\) \(\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\) ( đpcm )
Vậy ...
còn cái nịttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(ADTCDTSBN\right)\)
\(\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{\left(a-b\right)^3}{\left(c-d\right)^3}\)
ADTCDTSBN , ta có :
\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\left(\frac{a-b}{c-d}\right)^3\left(Đpcm\right)\)
~
Sửa lại dòng cuối :
\(\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\left(đpcm\right)\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
=> đpcm