K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
11 tháng 11 2020

ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2=1\)

\(\Leftrightarrow2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=0\)

mà x:y:z=a:b:c\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=\left(x+y+z\right)^2\)

vậy ra có dpcm

6 tháng 11 2017

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

mong các bn đừng làm như vậy nah

20 tháng 2 2018

Khụ,nhưng chẳng phải bạn cũng đang vi phạm sao?

16 tháng 11 2017

Từ x : y : z = a : b : c

=> \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

=> \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=\dfrac{a+b+c}{x+y+z}=\dfrac{1}{x+y+z}\) (Vì a + b + c = 1) (*1)

Ta có : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)

=> \(\left(\dfrac{a}{x}\right)^2=\left(\dfrac{b}{y}\right)^2=\left(\dfrac{c}{y}\right)^2\)= \(\dfrac{a^2}{x^2}=\dfrac{b^2}{y^2}=\dfrac{c^2}{z^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{a^2}{x^2}=\dfrac{b^2}{y^2}=\dfrac{c^2}{z^2}=\dfrac{a^2+b^2+c^2}{x^2+y^2+z^2}=\dfrac{1}{x^2+y^2+z^2}\) (*2)

Từ (1),(2) => \(\left(\dfrac{1}{x+y+z}\right)^2=\dfrac{1}{x^2+y^2+z^2}\)

=> \(\dfrac{1^2}{\left(x+y+z\right)^2}=\dfrac{1}{x^2+y^2+z^2}\)

=> \(\dfrac{1}{\left(x+y+z\right)^2}=\dfrac{1}{x^2+y^2+z^2}\)

=> \(\left(x+y+z\right)^2=x^2+y^2+z^2\) (ĐPCM) (Vì hai phân số bằng nhau,tử số bằng nhau => mẫu số bằng nhau.)

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$

$\Rightarrow x=at; y=bt; z=ct$. Ta có:

$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$

Mặt khác:

$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$

Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)

9 tháng 11 2021

em cảm ơn cô/thầy nhiều

28 tháng 12 2018

bn ơi câu a có sai đề k

29 tháng 12 2018

a) Sai đề

b) \(25-y^2=8\left(x-2016\right)^2\)

\(\Leftrightarrow5^2-y^2=8\left(x-2016\right)^2\)

\(\Leftrightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2=0\)

Mà \(8\left(x-2016\right)^2\ge0\Rightarrow5^2-y^2\ge8\left(x-2016\right)^2\ge0\)

\(\Rightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2\ge0\)

Do theo đề bài thì vế phải bằng 0 nên: \(\hept{\begin{cases}5^2-y^2=0\\8\left(x-2016\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=2016\end{cases}}\)

11 tháng 10 2016

Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)

Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa^2}{a^3}=\frac{yb^2}{b^3}=\frac{zc^2}{c^3}=\frac{a^2x+b^2y+c^2z}{a^3+b^3+c^3}\)

Ta có\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^3}{a^2x}=\frac{y^3}{b^2y}=\frac{z^3}{c^2z}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\)

\(A=\frac{\left(x^3+y^3+z^3\right)\left(a^3+b^3+c^3\right)\left(a+b+c\right)}{\left(x+y+z\right)\left(a^2x+b^2y+c^2z\right)^2}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\cdot\frac{a^3+b^3+c^3}{a^2x+b^2y+c^2z}\cdot\frac{a+b+c}{x+y+z}\)

\(=\frac{x^2}{a^2}\cdot\frac{a}{x}\cdot\frac{a}{x}\)=1

12 tháng 10 2016

[0ferh0g-y\pj=up-l][ki;,'j;.gk9r8goyu-[jl;mjfiweyu

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)

Ta có: a+b+c=1 <=>(a+b+c)= 1 <=> ab+bc+ca=0 (1) 
Theo  dãy tỉ số bằng nhau ta có: 
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z) 
=> xy+yz+zx=  ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2) 
từ (1) và (2) => xy + yz + zx = 0

Mình nhâm sorry

Từ x : y : z = a : b : c

=> xa=yb=zcxa=yb=zc

=> ax=by=czax=by=cz

Áp dụng t/c dãy tỉ số bằng nhau:

ax=by=cz=a+b+cx+y+z=1x+y+zax=by=cz=a+b+cx+y+z=1x+y+z (Vì a + b + c = 1) (*1)

Ta có : ax=by=czax=by=cz

=> (ax)2=(by)2=(cy)2(ax)2=(by)2=(cy)2a2x2=b2y2=c2z2a2x2=b2y2=c2z2

Áp dụng t/c dãy tỉ số bằng nhau:

a2x2=b2y2=c2z2=a2+b2+c2x2+y2+z2=1x2+y2+z2a2x2=b2y2=c2z2=a2+b2+c2x2+y2+z2=1x2+y2+z2 (*2)

Từ (1),(2) => (1x+y+z)2=1x2+y2+z2(1x+y+z)2=1x2+y2+z2

=> 12(x+y+z)2=1x2+y2+z212(x+y+z)2=1x2+y2+z2

=> 1(x+y+z)2=1x2+y2+z21(x+y+z)2=1x2+y2+z2

=> (x+y+z)2=x2+y2+z2(x+y+z)2=x2+y2+z2 (ĐPCM) (Vì hai phân số bằng nhau,tử số bằng nhau => mẫu số bằng nhau.)