Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at; y=bt; z=ct$. Ta có:
$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$
Mặt khác:
$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$
Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)
ta có: a+b+c=1
<=>(a+b+c)^2=1
<=>ab+bc+ca=0 (1)
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z)
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x...
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2)
từ (1) và (2) ta có đpcm
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0
Mình nhâm sorry
Từ x : y : z = a : b : c
=> xa=yb=zc
=> ax=by=cz
Áp dụng t/c dãy tỉ số bằng nhau:
ax=by=cz=a+b+cx+y+z=1x+y+z (Vì a + b + c = 1) (*1)
Ta có : ax=by=cz
=> (ax)2=(by)2=(cy)2= a2x2=b2y2=c2z2
Áp dụng t/c dãy tỉ số bằng nhau:
a2x2=b2y2=c2z2=a2+b2+c2x2+y2+z2=1x2+y2+z2 (*2)
Từ (1),(2) => (1x+y+z)2=1x2+y2+z2
=> 12(x+y+z)2=1x2+y2+z2
=> 1(x+y+z)2=1x2+y2+z2
=> (x+y+z)2=x2+y2+z2 (ĐPCM) (Vì hai phân số bằng nhau,tử số bằng nhau => mẫu số bằng nhau.)
Các bạn giúp mình với, mai mình phải nộp rồi, ai nhanh mình k cho !!!
bn này ra toàn bài khó nhỉ :)
đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
\(\Rightarrow x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=k^2.\left(a^2+b^2+c^2\right)=k^2.1=k^2\left(1\right)\)
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k.\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\left(2\right)\)
từ (1) và (2) => đpcm
ps: ko chắc lắm :))
Đặt x/a=y/b=z/c=k
⇒x=ka (1)
y=kb (2)
z=kc (3)
Ta có
a²/x+b²/y+c²/z (4)
Thay (1);(2);(3)vào (4) ta được:
a²/x+b²/y+c²/z
=a²/ka+b²/kb+c²/kc
=a/k+b/k+c/k
=(a+b+c)/k (*)
Lại có:
(a+b+c)²/(x+y+z) (5)
Thay (1);(2);(3) vào (5) ta được:
(a+b+c)²/(x+y+z)
=(a+b+c)²/(ka+kb+kc)
=(a+b+c)²/k(a+b+c)
=(a+b+c)/k (**)
Từ (*)và(**)
⇒a²/x+b²/y+c²/z=(a+b+c)²/(x+y+z)
Vậya²/x+b²/y+c²/z=(a+b+c)²/(x+y+z) khi x/a=y/b=z/c
Từ x : y : z = a : b : c
=> \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
=> \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=\dfrac{a+b+c}{x+y+z}=\dfrac{1}{x+y+z}\) (Vì a + b + c = 1) (*1)
Ta có : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
=> \(\left(\dfrac{a}{x}\right)^2=\left(\dfrac{b}{y}\right)^2=\left(\dfrac{c}{y}\right)^2\)= \(\dfrac{a^2}{x^2}=\dfrac{b^2}{y^2}=\dfrac{c^2}{z^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a^2}{x^2}=\dfrac{b^2}{y^2}=\dfrac{c^2}{z^2}=\dfrac{a^2+b^2+c^2}{x^2+y^2+z^2}=\dfrac{1}{x^2+y^2+z^2}\) (*2)
Từ (1),(2) => \(\left(\dfrac{1}{x+y+z}\right)^2=\dfrac{1}{x^2+y^2+z^2}\)
=> \(\dfrac{1^2}{\left(x+y+z\right)^2}=\dfrac{1}{x^2+y^2+z^2}\)
=> \(\dfrac{1}{\left(x+y+z\right)^2}=\dfrac{1}{x^2+y^2+z^2}\)
=> \(\left(x+y+z\right)^2=x^2+y^2+z^2\) (ĐPCM) (Vì hai phân số bằng nhau,tử số bằng nhau => mẫu số bằng nhau.)