\(a+b+c=2016\) và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

\(a+b+c=2016\Rightarrow\left\{{}\begin{matrix}a=2016-\left(b+c\right)\\b=2016-\left(c+a\right)\\c=2016-\left(a+b\right)\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{2016-\left(b+c\right)}{b+c}+\dfrac{2016-\left(c+a\right)}{c+a}+\dfrac{2016-\left(a+b\right)}{a+b}\)\(\Rightarrow S=2016\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\Rightarrow S=2016.\dfrac{1}{90}-3\)

\(\Rightarrow S=\dfrac{97}{2}\)

5 tháng 5 2017

Cho mik hỏi chút: làm sao có "-3" vậy bn?

13 tháng 3 2017

A= \(\left(\dfrac{a}{b+c}+1\right)\)+\(\left(\dfrac{b}{a+c}+1\right)\)+\(\left(\dfrac{c}{a+b}+1\right)\)-3

= \(\dfrac{a+b+c}{b+c}\)+\(\dfrac{a+b+c}{a+c}\)+ \(\dfrac{c+a+b}{a+b}\) -3

= (a+b+c). (\(\dfrac{1}{b+c}\) + \(\dfrac{1}{a+c}\) + \(\dfrac{1}{a+b}\)) -3

= 2016. 1-3=2013

13 tháng 3 2017

Đề bài của bạn cứ thiếu chỗ nào ấy

23 tháng 10 2017

Nhân cả hai vế của đẳng thức cho a+b+c ta được

\(\dfrac{a+b+c}{a+b}\)+\(\dfrac{a+b+c}{a+b}\)=\(\dfrac{a+b+c}{c+a}\)=\(\dfrac{a+b+c}{90}\)

=> a+ \(\dfrac{c}{a+b}\)+1+\(\dfrac{a}{b+c}\)+1+\(\dfrac{b}{c+a}\)=\(\dfrac{2007}{90}\)

=>\(\dfrac{a}{b+c}\)+\(\dfrac{b}{c+a}\)+\(\dfrac{c}{a+b}\)=\(\dfrac{2007}{90}\)-3= 22,3-3=19,3

4 tháng 3 2017

\(\Leftrightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{90}\Leftrightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{a+b+c}{a+b}\)\(\Leftrightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1=\dfrac{2007}{90}\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=\dfrac{193}{10}\)

\(\Rightarrow S=\dfrac{193}{10}\)

5 tháng 5 2017

Mik ko hỉu, tại sao có "-3"?

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

2 tháng 2 2018

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks

10 tháng 2 2018

b) Tìm min

\(SV=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)

\(SV=\left|x-2016\right|+\left|2018-x\right|+\left|x-2017\right|\)

\(SV\ge\left|x-2016+2018-x\right|+\left|x-2017\right|=2+\left|x-2017\right|\ge2\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2016\le x\le2018\\x=2017\end{matrix}\right.\Leftrightarrow x=2017\)

3) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=676\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=676\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{c+a}=673\)

10 tháng 2 2018

Mong mn giúp đỡ mikyeu

Cảm ơn mn

13 tháng 3 2017

theo bài ra ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{`1}{4}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{4}\left(a+b+c\right)\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{4}\)

\(\Rightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\dfrac{2016}{4}\)

\(\Rightarrow\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)

\(\Rightarrow3+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=504-3\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)

vậy \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)

13 tháng 3 2017

(a+b+c)(1/a+b+1/b+c+1/c+a)=(a+b+c)/4

(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)=(a+b+c)/4

=> 1+c/(a+b)+1+a/(b+c)+1+b/(c+a)=2016/4

<=>c/(a+b)+a/(b+c)+b/(c+a)+3=504

=> A=a/(b+c)+b/(c+a)+c/(a+b)=504-3=501

23 tháng 8 2017

1. Câu hỏi của Cuber Việt ( Câu b í -.- )

2. Quy đồng mẫu số:

\(\dfrac{a}{b}=\dfrac{a.\left(b+2018\right)}{b.\left(b+2018\right)}=\dfrac{ab+2018a}{b.\left(b+2018\right)}\)

\(\dfrac{a+2018}{b+2018}=\dfrac{\left(a+2018\right).b}{\left(b+2018\right).b}=\dfrac{ab+2018b}{b.\left(b+2018\right)}\)

\(b>0\) \(\Rightarrow\) Mẫu 2 phân số ở trên dương.

So sánh \(ab+2018a\)\(ab+2018b\):

. Nếu \(a< b\Rightarrow\) Tử số phân số thứ 1 < Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

. Nếu \(a=b\) \(\Rightarrow\) Hai phân số bằng 1.

. Nếu \(a>b\Rightarrow\) Tử số phân số thứ 1 > Tử số phân số thứ 2.

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

3. \(\dfrac{x}{6}-\dfrac{1}{y}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x}{6}-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{y}=\dfrac{x-3}{6}\)

\(\Rightarrow y.\left(x-3\right)=6\)

Ta có: \(6=1.6=2.3=(-1).(-6)=(-2).(-3)\)

Tự lập bảng ...

Vậy ta có những cặp x,y thỏa mãn là:

\(\left(1,7\right);\left(6,2\right);\left(2,4\right);\left(3,3\right);\left(-1,-5\right);\left(-6,0\right);\left(-2,-2\right);\left(-3,-1\right)\)

23 tháng 8 2017

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a\left(b+2018\right)}{b\left(b+2018\right)}\\\dfrac{a+2018}{b+2018}=\dfrac{b\left(a+2018\right)}{b\left(b+2018\right)}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{ab+2018a}{b^2+2018b}\\\dfrac{a+2018}{b+2018}=\dfrac{ab+2018b}{b^2+2018b}\end{matrix}\right.\)

Cần so sánh:

\(ab+2018a\) với \(ab+2018b\)

Cần so sánh \(2018a\) với \(2018b\)

Cần so sánh \(a\) với \(b\)

\(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2018}{b+2018}\)

\(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2018}{b+2018}\)

\(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2018}{b+2018}\)