\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{90}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

\(\Leftrightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{90}\Leftrightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{a+b+c}{a+b}\)\(\Leftrightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1=\dfrac{2007}{90}\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=\dfrac{193}{10}\)

\(\Rightarrow S=\dfrac{193}{10}\)

5 tháng 5 2017

Mik ko hỉu, tại sao có "-3"?

23 tháng 10 2017

Nhân cả hai vế của đẳng thức cho a+b+c ta được

\(\dfrac{a+b+c}{a+b}\)+\(\dfrac{a+b+c}{a+b}\)=\(\dfrac{a+b+c}{c+a}\)=\(\dfrac{a+b+c}{90}\)

=> a+ \(\dfrac{c}{a+b}\)+1+\(\dfrac{a}{b+c}\)+1+\(\dfrac{b}{c+a}\)=\(\dfrac{2007}{90}\)

=>\(\dfrac{a}{b+c}\)+\(\dfrac{b}{c+a}\)+\(\dfrac{c}{a+b}\)=\(\dfrac{2007}{90}\)-3= 22,3-3=19,3

2 tháng 4 2017

\(a+b+c=2016\Rightarrow\left\{{}\begin{matrix}a=2016-\left(b+c\right)\\b=2016-\left(c+a\right)\\c=2016-\left(a+b\right)\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{2016-\left(b+c\right)}{b+c}+\dfrac{2016-\left(c+a\right)}{c+a}+\dfrac{2016-\left(a+b\right)}{a+b}\)\(\Rightarrow S=2016\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\Rightarrow S=2016.\dfrac{1}{90}-3\)

\(\Rightarrow S=\dfrac{97}{2}\)

5 tháng 5 2017

Cho mik hỏi chút: làm sao có "-3" vậy bn?

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

2 tháng 2 2018

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

10 tháng 2 2018

https://hoc24.vn/hoi-dap/question/559178.html

Tương tự

12 tháng 2 2018

không đx bạn ạ

17 tháng 5 2017

Sửa đề:

\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(=2001.\dfrac{1}{10}-3\)

\(=200,1-3=197,1\)

Vậy S = 197,1

17 tháng 5 2017

kcj

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks