Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2004a}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(M=\frac{2004a}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(M=\frac{2004ac+abc+abc^2}{abc\left(ac+c+1\right)}=\frac{a^2bc^2+abc+abc^2}{abc\left(ac+c+1\right)}=\frac{abc\left(ac+1+c\right)}{abc\left(ac+c+1\right)}=1\)
a)\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
<=>\(\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)
<=>\(\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}=\dfrac{205-x+95}{95}=0\)
<=> \(\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}=0\)
<=> \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
<=> 300 - x = 0
<=> x = 300
b) \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
<=> \(\dfrac{2-x}{2002}+1=\left(\dfrac{1-x}{2003}+1\right)+\left(\dfrac{x}{2004}+1\right)\){Cộng cả hai vế của phương trình với 2}
<=> \(\dfrac{2-x+2002}{2002}=\dfrac{1-x+2003}{2003}+\dfrac{-x+2004}{2004}\)
<=> \(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)
<=> \(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
<=> \(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
<=> 2004 - x = 0
<=> x = 2004.
Các bợn làm nhanh dùm mk nha. Bài kiểm tra sáng mai mình nộp rồi. Ai nhanh nhất mình tick cho nha
sai đề nha bn : là \(\dfrac{2}{\left(a+b\right)^{1002}}\) mới đúng
+ \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}=\dfrac{x^2+y^2}{a+b}\)
\(\Rightarrow\dfrac{bx^4+ay^4}{ab}=\dfrac{x^2+y^2}{a+b}\)
\(\Rightarrow\left(bx^4+ay^4\right)\left(a+b\right)=ab\left(x^2+y^2\right)\)\(\Rightarrow abx^4+aby^4+a^2y^4+b^2x^4=abx^2+aby^2\)
\(\Rightarrow a^2y^4+b^2x^4=abx^2\left(1-x^2\right)+aby^2\left(1-y^2\right)\)
\(\Rightarrow a^2y^4+b^2x^4=abx^2y^2+abx^2y^2\)
\(\Rightarrow\left(ay^2\right)^2+\left(bx^2\right)^2-2abx^2y^2=0\)
\(\Rightarrow\left(ay^2-bx^2\right)^2=0\)
\(\Rightarrow ay^2-bx^2=0\Rightarrow ay^2=bx^2\)
\(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\) ( tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\dfrac{x^{2004}}{a^{1002}}=\dfrac{y^{2002}}{b^{1002}}=\dfrac{1}{\left(a+b\right)^{1002}}\)
\(\Rightarrow\dfrac{x^{2004}}{a^{1002}}+\dfrac{y^{2004}}{b^{1002}}=\dfrac{2}{\left(a+b\right)^{1002}}\) ( đpcm )
Ta có:
\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{1}{b+1+bc}+\dfrac{1}{c+1+ac}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac}{abc+ac+abc.c}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac}{1+ac+c}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac+1+c}{1+ac+c}=1\) (đpcm)
Với cách tính tương tự như vậy,bạn có thể làm thêm 2 cách nữa nhưng kết quả vẫn bằng 1.
a: \(A=\dfrac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}=2005\)
b: \(B=\dfrac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=2004\)
\(\dfrac{2004a}{ab+2004a+2004}+\dfrac{b}{bc+b+2004}+\dfrac{c}{ac+c+1}\)\(=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)\(=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)\(=\dfrac{ac}{ac+c+1}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac+c+1}{ac+c+1}=1\)
=> đpcm
mk ko hiểu từ bước 1 luôn bn lm rõ ra đc ko
2004 biến đổi tk nào mà mất đi