Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem ở : http://d.violet.vn/uploads/resources/51/286225/preview.swf
\(\left(a+b+c\right)^2=[\left(a+b\right)+c]^2\)
\(=\left(a+b\right)^2+2.\left(a+b\right).c+c^2\)
\(=a^2+2ab+b^2+2ac+2bc+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca\)
( a - b + c )2
= [ ( a - b ) + c ]2
= ( a - b )2 + 2( a - b )c + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
= a2 + b2 + c2 - 2ab - 2bc + 2ca ( đpcm )
\(\left(a-b+c\right)^2\)
\(=\left(a-b+c\right).\left(a-b+c\right)\)
\(=a.\left(a-b+c\right)-b.\left(a-b+c\right)+c.\left(a-b+c\right)\)
\(=a^2-ab+ac-\left(ab-b^2+bc\right)+ac-bc+c^2\)
\(=a^2-ab+ac-ab+b^2-bc+ac-bc+c^2\)
\(=a^2-2ab+2ac+b^2-2bc+c^2\)
\(=a^2+b^2+c^2-2ab-2bc+2ac\)
\(\Rightarrow\left(a-b+c\right)^2=a^2+b^2+c^2-2ab-2bc+2ac\left(đpcm\right).\)
(a+b+c)2=a2+b2+c2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=> bc=-ab-ac
=>\(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2-ac-ab+bc}\)=\(\frac{a^2}{\left(a-c\right)\left(a-b\right)}\)
Tuong tu => \(\frac{b^2}{b^2+2ac}=....\)
\(\frac{c^2}{c^2+2ab}=...\)
=> \(\frac{a^2}{a^2+2bc}+....\)=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)+...
=\(\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
=1
Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=0\)
Ta lại có:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\)
\(=\frac{a^2}{a^2-ab+bc-ca}+\frac{b^2}{b^2-ab-bc+ca}+\frac{c^2}{c^2+ab-bc-ca}\)
\(=\frac{a^2}{\left(b-a\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(c-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)
\(=-\left(\frac{a^2}{\left(a-b\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\right)\)
\(=-\left(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)
\(=-\frac{\left(a-b\right)\left(c-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Ai có thể giải thích cho mình đoạn a^2/(a^2-ab+bc-ca) đc ko mình cảm ơn
( a + b + c ) ^2 = a^2+b^2+c^2 + 2(ab+ac+bc)
=> ab = -ac-bc
bc= -ab-ac
ac= -ab-bc
a^2 + 2bc = a^2 + 2bc - ( ab + ac + ac)
= a^2 + bc - ab - ac
= ( a-c) ( a-b)
b^2 + 2ca = ( c-b) ( a-b)
c^2 + 2ab = (b-c) (a-c)
A= a^2/ ( a-c) (a-b) + b^2/ ( c-b) (a-b) + c^2/ ( b-c)(a-c)
rồi quy đồng là xong
Ta có: P = (a^2+b^2+c^2-ab-bc-ca)/(a^2-c^2-2ab+2bc)
=1/2.(2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca)/(a^2 - 2ab + b^2 - b^2 +2bc - c^2)
=1/2.[(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)]/[(a-b)^2-(b^2-2bc+c^2)]
=1/2.[(a-b)^2 + (b-c)^2 + (a-c)^2]/[(a-b)^2 - (b-c)^2
Lại có: a – b = 7; b – c = 3 ó a – b + b – c = 7 + 3 ó a – c = 10
Thay a - b = 7 ; b – c = 3; a - c = 10 vào P, ta được:
P = 1/2 .(7^2 + 3^2 + 10^2)/(7^2 – 3^2)
= 1/2.(49 + 9 + 100)/(49 – 9)
= 1/2.158/40
= 158/80
= 79/40
# Chúc bạn học tốt!
\(a-b=7;b-c=3\text{ nên: }\left(a-b\right)+\left(b-c\right)=a-c=10\)
\(\text{tử P}=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=\frac{1}{2}\left(3^2+7^2+10^2\right)=\frac{1}{2}.158=79\)
\(a^2-c^2-2ab-2bc=\left(a+c\right)\left(a-c\right)-2b\left(a+c\right)=\left(a+c\right)\left(a-c-2b\right)\)
bạn ktra lại đề :)
\(a^2-b^2-c^2-2bc-2ac-2ab\)
\(=>a^2-b^2-c^2-2\left(bc+ac+ab\right)\)
\(=\left(a+b+c\right)^2\)
\(=10^2=100\)
Ủng hộ mik nha thanks nhiều