K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Ta có:\(a^2+b^2+c^2=2\)

        \(\Leftrightarrow\left(a+b+c\right)^2-2ab-2ac-2bc=2\)

                   Mà a+b+c=2

                        \(\Rightarrow4-2ab-2ac-2bc=2\)

                         \(\Rightarrow2-2ab-2ac-2bc=0\)

                         \(\Rightarrow-2\left(ab+ac+bc\right)=-2\)

                         \(\Rightarrow ab+ac+bc=1\left(1\right)\)

Ta lại có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+ac+bc}{abc}\)

                      Từ (1) suy ra đc:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\left(đpcm\right)\)

11 tháng 8 2017

theo bài ra ta có: a+b+c=2 => (a+b+c)^2 =4 => a^2 +b^2 +c^2 +2(ab+bc+ca)=4=> 2(ab+bc+ca)=2(vì a^2 +b^2 +c^2=2) 

=> ab+bc+ca=1   =>\(\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=\frac{1}{abc}\)        (vì abc khác 0)

                          => \(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=\frac{1}{abc}\)

Vậy với a+b+c=a^2+b^2+c^2=2 và abc khác  0 thì \(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=\frac{1}{abc}\)

2 tháng 5 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) = \(\overline{\frac{\overline{bc}+\overline{ac}+\overline{ac}}{\overline{abc}}}\) = ab + bc + ca 
=> a + b + c = ab + bc + ca 
=> a + b + c - ab - bc - ca = 0 
=> a + b + c - ab - bc - ac + abc - 1 = 0 
=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
=> - a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
=> (b - 1)(- a + 1 - c + ac) = 0 
=> (b - 1)[( - a + 1) + (ac - c)] = 0 
=> (b - 1)[ - (a - 1) + c(a - 1)] = 0 
=> (a - 1)(b - 1)(c - 1) = 0 
=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
=> a = 1 hoặc b = 1 hoặc c = 1 

Vậy (a - 1)(b - 1)(c - 1) > 1

2 tháng 5 2017

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(\Leftrightarrow abc-ac-bc+c-ab+a+b-1>0\)

\(\Leftrightarrow-ab-bc-ab+a+b+c>0\)

\(\Leftrightarrow a+b+c>ab+ac+bc\)

\(\Leftrightarrow a+b+c>\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)

\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (thỏa mãn đề bài)

Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

NV
23 tháng 5 2020

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

17 tháng 5 2020

giả sử  \(a+\frac{1}{a}\ge2\)

vì a > 0 => \(a^2+1\ge2a\)

          <=> \(a^2+1-2a\ge0\) 

          <=> \(\left(a-1\right)^2\ge0\)( luôn đúng vs mọi a > 0)

=> \(a+\frac{1}{a}\ge2\). CMTT ta có \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)(1)

Ta có \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ac+bc+ab+a+b+c+1\)

\(=1+1+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+a+b+c\)\(=2+\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}+b\right)+\left(\frac{1}{c}+c\right)\)

Từ (1) =>\(2+\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}+b\right)+\left(\frac{1}{c}+c\right)\ge8\)(đpcm)

7 tháng 11 2015

tick cho minh roi minh lam cho

19 tháng 12 2017

Đặt A = \(\frac{a}{ab+a+1}\)\(+\)\(\frac{b}{bc+b+1}\)\(+\)\(\frac{c}{ac+c+1}\)

\(\frac{a}{ab+a+1}\)\(+\)\(\frac{ab}{a\left(bc+b+1\right)}\)\(+\)\(\frac{abc}{ab\left(ac+c+1\right)}\)

\(\frac{a}{ab+a+1}\)\(+\)\(\frac{ab}{abc+ab+a}\)\(+\)\(\frac{abc}{abc.a+abc+ab}\)

Vì   abc = 1  nên:

A = \(\frac{a}{ab+a+1}\)\(+\)\(\frac{ab}{ab+a+1}\)\(+\)\(\frac{1}{ab+a+1}\)

\(\frac{a+ab+1}{ab+a+1}\)= 1

20 tháng 1 2019

Vì a,b,c > 0 và a+b+c=1

=> 0 < a,b,c < 1

=> 1-a, 1-b, 1-c > 0

Áp dụng bất đẳng thức cô-si cho các số dương ta có:

\(VP=4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le4\cdot\dfrac{\left[\left(1-a\right)+\left(1-c\right)\right]^2}{4}\cdot\left(1-b\right)\)

\(=\left(2-a-c\right)^2\left(1-b\right)\)

\(=\left[2\left(a+b+c\right)-a-c\right]^2\left(1-b\right)\)

\(=\left(a+2b+c\right)^2\left(1-b\right)=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)< b+1=a+2b+c=VT\)

Vậy VT > VP. Dấu "=" không xảy ra