\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\) ≥
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Áp dụng BĐT Cô - Si , ta có :

\(\dfrac{a}{b^2}+\dfrac{1}{a}\)\(2\sqrt{\dfrac{a}{b^2}.\dfrac{1}{a}}=2.\dfrac{1}{b}\left(a,b>0\right)\left(1\right)\)

\(\dfrac{b}{c^2}+\dfrac{1}{b}\text{ ≥ }2\sqrt{\dfrac{b}{c^2}.\dfrac{1}{b}}=2.\dfrac{1}{c}\left(b,c>0\right)\left(2\right)\)

\(\dfrac{c}{a^2}+\dfrac{1}{c}\text{≥}2\sqrt{\dfrac{c}{a^2}.\dfrac{1}{c}}=2.\dfrac{1}{a}\left(a,c>0\right)\left(3\right)\)

Từ ( 1 ; 2 ; 3) Ta có :

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm

15 tháng 5 2018

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{2}{c}=0\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{b}=\dfrac{2}{c}-\dfrac{1}{a}=\dfrac{2a-c}{ac}\\\dfrac{1}{a}=\dfrac{2}{c}-\dfrac{1}{b}=\dfrac{2b-c}{bc}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a-c=\dfrac{ac}{b}\\2b-c=\dfrac{bc}{a}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a+c}{2a-c}=\dfrac{b\left(a+c\right)}{ac}=\dfrac{ab}{ac}+\dfrac{bc}{ac}=\dfrac{b}{c}+\dfrac{b}{a}\\\dfrac{b+c}{2b-c}=\dfrac{a\left(b+c\right)}{bc}=\dfrac{ab}{bc}+\dfrac{ac}{bc}=\dfrac{a}{c}+\dfrac{a}{b}\end{matrix}\right.\)

Áp dụng bđt Cosi cho 2 số sương ta có: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{2}{c}=0\Leftrightarrow\dfrac{2}{c}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{c}\ge2\)(áp dụng \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\))

Ta có: \(\dfrac{a+c}{2a-c}+\dfrac{b+c}{2b-c}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\dfrac{a+b}{c}\ge2+2=4\)

Dấu "=" xawy ra khi và chỉ khi a=b=c

27 tháng 3 2018

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ba+bc\)

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow a< b\)(đúng)

a)Áp dụng

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)

Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)

Từ (1) và (2)=> đpcm

27 tháng 3 2018

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có

\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

9 tháng 9 2017

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

=\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a+b+c}{abc}\right)\)

mà a+b+c=0

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{0}{abc}\right)=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

9 tháng 9 2017

cảm ơn bạnvui

19 tháng 1 2018

ta có: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

<=>\(\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

<=>\(\dfrac{a^2}{b+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{b^2}{a+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{c^2}{a+b}+\dfrac{ac}{a+b}+\dfrac{cb}{a+b}=a+c+b\)

<=>\(\dfrac{a^2}{b+c}+\dfrac{ab+ac}{b+c}+\dfrac{b^2}{a+c}+\dfrac{ab+bc}{a+c}+\dfrac{c^2}{a+b}+\dfrac{ac+cb}{a+b}=a+c+b\)

<=>\(\dfrac{a^2}{b+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{b^2}{a+c}+\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c^2}{a+b}+\dfrac{c\left(a+b\right)}{a+b}=a+c+b\)

<=>\(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+c+b\)

<=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=a+c+b-a-c-b=0\) (đpcm)

chúc bạn học tốt ^ ^

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

30 tháng 10 2018

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=-\dfrac{1}{c^3}\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3+\dfrac{1}{c^3}=0\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=0\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{3}{ab}.\left(-\dfrac{1}{c}\right)=0\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}-\dfrac{3}{abc}=0\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

Ta có: Điều cần chứng minh là \(A=3abc\) hay \(\dfrac{A}{3abc}=1\)

Thật vậy:

\(\dfrac{A}{3abc}=\left(\dfrac{b^2c^2}{a}+\dfrac{c^2a^2}{b}+\dfrac{a^2b^2}{c}\right).\dfrac{1}{3abc}\)

\(\dfrac{A}{3abc}=\dfrac{b^2c^2}{3a^2bc}+\dfrac{c^2a^2}{3ab^2c}+\dfrac{a^2b^2}{3abc^2}\)

\(\dfrac{A}{3abc}=\dfrac{bc}{3a^2}+\dfrac{ac}{3b^2}+\dfrac{ab}{3c^2}\)

\(\dfrac{A}{3abc}=\dfrac{abc}{3a^3}+\dfrac{abc}{3b^3}+\dfrac{abc}{3c^3}\)

\(\dfrac{A}{3abc}=\dfrac{abc}{3}\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{abc}{3}.\dfrac{3}{abc}=1\)

\(\dfrac{A}{3abc}=1\Leftrightarrow A=3abc\left(đpcm\right)\)