Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(a+b+c=0\)
\(\Rightarrow c=-a-b\)
\(\Rightarrow c^2=a^2+2ab+b^2\)
Tương tự,ta có:
\(a^2=b^2+2bc+c^2\)
\(b^2=a^2+2ac+c^2\)
Thay vào bài toán,ta được:
\(P=\frac{c^2}{a^2+b^2-\left(a^2+2ab+b^2\right)}+\frac{a^2}{b^2+c^2-\left(b^2+2bc+c^2\right)}+\frac{b^2}{c^2+a^2-\left(a^2+2ac+c^2\right)}\)
\(P=\frac{-c^2}{2ab}+\frac{-a^2}{2bc}+\frac{-b^2}{2ac}\)
\(P=\frac{-\left(a^3+b^3+c^3\right)}{2abc}\)
Do \(a+b+c=0\Rightarrow-a=b+c\)
\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)
\(\Rightarrow-a^3=b^3+c^3-3abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Khi đó,ta có:
\(P=\frac{-\left(3abc\right)}{2abc}=-\frac{3}{2}\)
Có \(\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\left(b+c\right)^2\\b^2=\left(a+c\right)^2\\c^2=\left(a+b\right)^2\end{matrix}\right.\)Thay vào M đc
\(M=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)\(\Leftrightarrow M=\frac{1}{2}\left(\frac{a^3+b^3+c^3}{abc}\right)\)
Tháy hơi sai đề rồi
\(\frac{ab+bc+ca}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)
Pham Van Hung mình ko hiểu tại sao \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)
\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)
\(\Rightarrow bcx+acy+abz=0\)
Lại có:\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{bcx+acy+abz}{xyz}=4\)(bình phương hai vế)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)(Vì \(bcx+acy+abz=0\))
Từ (1) \(\Rightarrow bcx+acy+abz=0\)
Gọi \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\left(2\right)\)
Từ (2) \(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{ab}{xy}+\frac{ac}{xz}+\frac{bc}{yz}\right)=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=4-\left(\frac{abz+acy+bcx}{xyz}\right)\)
\(=4\)
\(b,\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Từ \(a+b+c=0\Rightarrow a+b=-c\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự \(b^2+c^2-a^2=-2bc\)và \(c^2+a^2-b^2=-2ac\)
\(\Rightarrow\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=\frac{1}{-2}+\frac{1}{-2}+\frac{1}{-2}\)
\(=-\frac{3}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow a^2+b^2+2ab=c^2\)
\(\Rightarrow c^2-a^2-b^2=2ab\)
Tương tự :
\(b^2-c^2-a^2=2ac\)
\(a^2-b^2-c^2=2ab\)
\(\Leftrightarrow\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)
Mà \(a+b+c=0\)\(\Rightarrow a^3+b^3+c^3=3abc\)( cái này rất dễ chứng minh nha , bạn có thể tham khảo trên mạng hoặc nhắn tin cho mình )
\(\Leftrightarrow\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=\left(-c\right)^2\Leftrightarrow a^2+b^2+2ab=c^2\Leftrightarrow a^2+b^2-c^2=-2ab\)
tương tự ta có: b2+c2-a2=-2bc ; a2+c2-b2=-2ac
Do đó \(P=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)