K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

Sử dụng bất đẳng thức  \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)  với ba số  \(a,b,c\)  và ba số  \(x,y,z\)  không âm, ta có:

 \(P=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)  \(\left(1\right)\) (do  \(a,b,c>0\))

Mà  \(a+b+c=3\)  (gt) nên \(\frac{9}{a+b+c}=\frac{9}{3}=3\)  \(\left(2\right)\)

Từ \(\left(1\right)\)  và  \(\left(2\right)\)  suy ra  \(P\ge3\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=1\)

Vậy,  \(P_{min}=3\)  khi và chỉ khi  \(a=b=c=1\)

21 tháng 5 2022

https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966

NV
7 tháng 3 2022

\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{1}{2}ab\)

Tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{1}{2}bc\) ; \(\dfrac{c}{1+a^2}\ge c-\dfrac{1}{2}ca\)

Cộng vế:

\(P\ge a+b+c-\dfrac{1}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{6}\left(a+b+c\right)^2=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)

16 tháng 5 2016

ta có: \(a+1>=2\sqrt{a};b+1>=2\sqrt{b};c+1>=2\sqrt{c}\)

=> \(\left(a+1\right)\left(b+1\right)\left(c+1\right)>=8\sqrt{abc}=8\)

Vậy min P=8.Dấu = khi a=b=c=1.

16 tháng 5 2016

Áp dụng BĐT Cô-si, ta lần lượt có:

\(a+1\ge\sqrt{a};b+1\ge\sqrt{b};c+1\ge\sqrt{c}\)

Vậy \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\times2\sqrt{b}\times2\sqrt{c}=8\sqrt{a\times b\times c}=8\)

Dấu bằng xảy ra khi a=b=c=1

15 tháng 2 2020

Bạn tham khảo link này:

https://h7.net/hoi-dap/toan-8/tim-gia-tri-nho-nhat-cua-a-1-a-1-b-1-c-biet-a-b-c-3abc-faq262626.html

27 tháng 4 2017

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x;y;z\ge0\) ta được :

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+\left(a+b+c\right)}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(a=b=c=1\)

Vậy GTNN của B là \(\frac{3}{2}\) tại \(a=b=c=1\)

28 tháng 4 2017

Giải:

Áp dụng BĐT Cô-si ta có: 

\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)

\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)

\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)

Nhân vế theo vế ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(2.2.2\right)\left(\sqrt{a}.\sqrt{b}.\sqrt{c}\right)\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8.\sqrt{abc}=8.\sqrt{1}=8\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{min}=8\) tại \(\Leftrightarrow a=b=c=1\)

23 tháng 2 2023

26 tháng 4 2017

dùng bđt 1/x+1/y+1/z >/ 9/(x+y+z) với x,y,z>0