Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}+\dfrac{1}{\dfrac{\left(a+b\right)^2}{2}}=\dfrac{4}{\left(a+b\right)^2}+\dfrac{1}{\dfrac{1}{2}}=6\)
Dấu "=" xảy ra <=> a = b = \(\dfrac{1}{2}\)
Giải:
Ta có:
\(\left(a+b+c+d\right)^2=\) \(\left[\left(a+c\right)+\left(b+d\right)\right]^2\)
\(\ge4\left(a+c\right)\left(b+d\right)\) \(=4\left(ab+bc+cd+da\right)\)\(=4\)
\(\Leftrightarrow a+b+c+d\) \(\ge2\left(a,b,c,d>0\right)\)
\(\Rightarrow\dfrac{a^3}{b+c+d}+\dfrac{b+c+d}{8}\) \(+\dfrac{b}{6}+\dfrac{1}{12}\ge\dfrac{2a}{3}\)
Tương tự ta cũng có:
\(\dfrac{b^3}{a+c+d}+\dfrac{a+c+d}{8}+\dfrac{b}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2b}{3}\)
\(\dfrac{c^3}{a+b+d}+\dfrac{a+b+d}{8}+\dfrac{c}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2c}{3}\)
\(\dfrac{d^3}{a+b+c}+\dfrac{a+b+c}{8}+\dfrac{d}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2d}{3}\)
Cộng vế theo vế các BĐT trên ta có:
\(P\ge\dfrac{a+b+c+d}{3}-\dfrac{1}{3}\ge\) \(\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\dfrac{1}{2}\)
Đầu tiên ta cm bđt:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)
Áp dụng ta có:
\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\ge\dfrac{9}{3+ab+bc+ca}\)
Cần cm:\(ab+bc+ca\le3\)
Hay \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
=>đpcm
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
\(A\ge\dfrac{\left(1+1+1\right)^2}{3+ab+bc+ac}=\dfrac{9}{3+ab+bc+ac}\)
Mặt khác,theo hệ quả AM-GM: \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le\dfrac{3^2}{3}=3\)
\(\Rightarrow\dfrac{9}{3+ab+bc+ac}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
a) Áp dụng bất đẳng thức AM-GM ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}\ge2\sqrt{\dfrac{abc^2}{ab}}=2\sqrt{c^2}=2\left|c\right|=2c\left(c>0\right)\)
Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}\dfrac{ac}{b}+\dfrac{ab}{c}\ge2a\\\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\end{matrix}\right.\)
Cộng theo vế: \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\left(đpcm\right)\)
Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta được:
\(\dfrac{ab}{a+b}=\dfrac{ab+b^2-b^2}{a+b}=\dfrac{b\left(a+b\right)}{a+b}-\dfrac{b^2}{a+b}=b-\dfrac{b^2}{a+b}\)
Chứng minh tương tự:
\(\left\{{}\begin{matrix}\dfrac{bc}{b+c}=\dfrac{bc+c^2-c^2}{b+c}=\dfrac{c\left(b+c\right)}{b+c}-\dfrac{c^2}{b+c}=c-\dfrac{c^2}{b+c}\\\dfrac{ac}{c+a}=\dfrac{ac+a^2-a^2}{c+a}=\dfrac{a\left(c+a\right)}{c+a}-\dfrac{a^2}{c+a}=a-\dfrac{a^2}{c+a}\end{matrix}\right.\)
Cộng theo vế:
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ac}{a+c}=a+b+c-\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+c}\right)\le\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\left(đpcm\right)\)
b)Đặt \(A=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(A=\dfrac{a\left(a+b\right)-a^2}{a+b}+\dfrac{b\left(b+c\right)-b^2}{a+b}+\dfrac{c\left(c+a\right)-c^2}{c+a}\)
\(A=a+b+c-\dfrac{a^2}{a+b}-\dfrac{b^2}{b+c}-\dfrac{c^2}{c+a}\)
Lại có:\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
\(\Rightarrow A\le a+b+c-\dfrac{a+b+c}{2}=\dfrac{a+b+c}{2}\)
\(\Rightarrowđpcm\)
\(A+\dfrac{1}{4}\left(a+b+c\right)+\dfrac{3}{4}=\left(\dfrac{a^2}{b+1}+\dfrac{1}{4}\left(b+1\right)\right)+\left(\dfrac{b^2}{c+1}+\dfrac{1}{4}\left(c+1\right)\right)+\left(\dfrac{c^2}{a+1}+\left(a+1\right)\right)\)\(A+\dfrac{3}{2}\ge a+b+c=3\Rightarrow A\ge\dfrac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1
đề thế này à bạn nãy mình đọc chắc nhầm
\(\Sigma\dfrac{a}{ab+1}=a-\dfrac{a^2b}{ab+1}\ge\Sigma a-\dfrac{a^2b}{2\sqrt{ab}}=\Sigma a-\dfrac{a\sqrt{ab}}{2}\)
\(\Rightarrow\Sigma\dfrac{a}{ab+1}\ge a+b+c-(\dfrac{a\sqrt{ab}}{2}+\dfrac{b\sqrt{bc}}{2}+\dfrac{c\sqrt{ca}}{2})\)
\(=3-\dfrac{1}{2}\left(\Sigma a\sqrt{ab}\right)\ge3-\dfrac{1}{2}\left(\dfrac{a\left(a+b\right)}{2}+\dfrac{b\left(b+c\right)}{2}+\dfrac{c\left(c+a\right)}{2}\right)=3-\dfrac{1}{4}\left(a^2+b^2+c^2+ab+bc+ca\right)=3-\dfrac{1}{4}\left[\left(a+b+c\right)^2-\left(ab+bc+ca\right)\right]\ge3-\dfrac{1}{4}\left[3^2-\dfrac{\left(a+b+c\right)^2}{3}\right]=3-\dfrac{1}{4}\left[3^2-\dfrac{3^2}{3}\right]=\dfrac{3}{2}\)
\(dấu"="\Leftrightarrow a=b=c=1\)
\(B=\Sigma\dfrac{1}{b+1}\ge\dfrac{9}{a+b+c+1+1+1}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
\(dấu"="\Leftrightarrow a=b=c=1\)