Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(c=min\left\{a,b,c\right\}\Rightarrow1=a^2+b^2+c^2+2abc\ge2c^3+3c^2\Rightarrow c\le\frac{1}{2}\)
Chọn t > 0 thỏa mãn: \(\hept{\begin{cases}2t^2+c^2+2t^2c=1\left(1\right)\\2t^2+c^2+2t^2c=a^2+b^2+c^2+2abc\left(2\right)\end{cases}}\) (từ (1) ta mới có (2):v)
(2) \(\Rightarrow2c\left(t^2-ab\right)=a^2+b^2-2t^2\).
Ta thấy rằng, nếu\(t^2< ab\) thì:\(2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (mâu thuẫn).
Vì vậy: \(t^2\ge ab\Rightarrow a^2+b^2\ge2t^2\). Bây giờ đặt P = f(a;b;c)
Xét: \(f\left(a;b;c\right)-f\left(t;t;c\right)=\left(c-1\right)\left(t^2-ab\right)+c\left(a+b-2t\right)\)
\(=\left(c-1\right)\left(t^2-ab\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)\(=\left(c-1\right)\left(t^2-ab\right)+\frac{2c^2\left(t^2-ab\right)-2c\left(t^2-ab\right)}{a+b+2t}\)
\(=\left(c-1\right)\left(t^2-ab\right)\left(1+\frac{2c}{a+b+2t}\right)\le0\)
Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=f\left(t;t;1-2t^2\right)\).
\(=\frac{1}{8}\left(2c-1\right)^2\left[\left(2c-1\right)^2-6\right]+\frac{5}{8}\le\frac{5}{8}\)
Cách rất dài và hại não, tối rồi em lười check lại quá:((
Ta sẽ chứng minh:\(P\le\frac{5}{8}\Leftrightarrow5-8P=5+8abc-8\left(ab+bc+ca\right)\ge0\)
Ta có: \(5-8P=\frac{4ab\left[4\left(a+2bc-b-c\right)^2+\left(2c-1\right)^2\right]+c\left(2b-1\right)^2\left[4\left(a+b-c\right)^2+1\right]}{4ab+c\left(2b-1\right)^2}\ge0\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Theo nguyên lý Dirichlet, trong ba số 2a - 1; 2b - 1; 2c - 1 tồn tại ít nhất hai số cùng dấu
Giả sử \(\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow4ab-2a-2b+1\ge0\)
\(\Leftrightarrow4abc\ge2ac+2bc-c\Leftrightarrow2abc\ge ac+bc-\frac{c}{2}\)
Khi đó thì\(P=ab+bc+ca-2abc+abc\)\(\le ab+bc+ca-ac-bc+\frac{c}{2}+abc=ab+abc+\frac{c}{2}\)
\(\le\frac{a^2+b^2}{2}+abc+\frac{c}{2}=\frac{a^2+b^2+c^2+2abc}{2}-\frac{1}{2}\left(c^2-c+\frac{1}{4}\right)\)\(+\frac{1}{8}\)
\(=\frac{5}{8}-\frac{1}{2}\left(c-\frac{1}{2}\right)^2\le\frac{5}{8}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
Với các số thực a, b, c thay đổi thõa mãn điều kiện a2+b2+c2+2abc = 1. Tìm GTLN của P = ab+bc+ca-abc
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có : \(a^2+b^2+c^2\ge ab+ac+\)\(bc\)(1)
vì , ta có
(1) \(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\)\(\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)\)\(+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng) => bất đẳng thức
Ta có :
\(a^2+b^2+c^2-2abc\ge ab+bc+ac-2abc\)
<=>\(a^2+b^2+c^2+2abc-3abc\ge ab+bc+ac-2abc\)
<=> \(1-3abc\ge ab+bc+ac-2abc\)
=> MAX P=1 <=> \(\hept{\begin{cases}a=0\\b=c=1\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\a=c=1\end{cases}}\)
hoặc \(\hept{\begin{cases}c=0\\a=b=1\end{cases}}\)
Sai thì bảo mình nhé
xin lỗi Dòng thứ 8 và 9 phải là
\(a^2+b^2+c^2+2abc-4abc\ge ab+ac+bc-2abc\)
\(\Leftrightarrow1-4abc\ge ab+ac+bc-2abc\)
Áp dụng bđt Cauchy - Schwarz ta có:\(Q=\dfrac{2-2a^2b^2}{\left(1+a^2\right)\left(1+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(1-ab\right)\left(1+ab\right)}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2\left(bc+ca\right)\left(1+ab\right)}{\left(a+b\right)^2\left(b+c\right)\left(c+a\right)}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c\left(1+ab\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2c\left(1+ab\right)}{\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}\le\dfrac{2c\left(1+ab\right)}{\sqrt{\left(ab+1\right)^2\left(c^2+1\right)}}+\dfrac{2}{\sqrt{1+c^2}}=\dfrac{2c}{\sqrt{c^2+1}}+\dfrac{2}{\sqrt{c^2+1}}=\dfrac{2\left(c+1\right)}{\sqrt{c^2+1}}\le\dfrac{2\left(c+1\right)}{\sqrt{\dfrac{\left(c+1\right)^2}{2}}}=2\sqrt{2}\)Dấu "=" xảy ra khi a = b = \(\sqrt{2}-1;c=1\).
Vậy..
\(P\ge\dfrac{3abc}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{c^2+a^2}{b^2+\dfrac{c^2+a^2}{2}}\)
\(P\ge\dfrac{3}{2}+2\left(\dfrac{a^2+b^2}{a^2+c^2+b^2+c^2}+\dfrac{b^2+c^2}{a^2+b^2+a^2+c^2}+\dfrac{a^2+c^2}{a^2+b^2+b^2+c^2}\right)\)
Đặt \(\left(a^2+b^2;b^2+c^2;a^2+c^2\right)=\left(x;y;z\right)\)
\(\Rightarrow P\ge\dfrac{3}{2}+2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{3}{2}+2\left(\dfrac{x^2}{xy+xz}+\dfrac{y^2}{yz+xy}+\dfrac{z^2}{xz+yz}\right)\)
\(P\ge\dfrac{3}{2}+\dfrac{2\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3}{2}+\dfrac{3\left(xy+yz+zx\right)}{xy+yz+zx}=3+\dfrac{3}{2}=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Theo nguyên lí Dirichlet thì trong 3 số 2a - 1, 2b - 1, 2c - 1 tồn tại ít nhất 2 số cùng dấu
Giả sử đó là 2a - 1 và 2b - 1 thì \(\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow4ab-2a-2b+1\ge0\Leftrightarrow2ab\ge a+b-\frac{1}{2}\)\(\Leftrightarrow2abc\ge ac+bc-\frac{c}{2}\)
\(P=ab+bc+ca-abc=ab+bc+ca-2abc+abc\)\(\le ab+bc+ca-ac-bc+\frac{c}{2}+abc=ab+abc+\frac{c}{2}\)\(\le\frac{a^2+b^2}{2}+abc+\frac{c}{2}+\frac{c^2}{2}-\frac{c^2}{2}-\frac{1}{8}+\frac{1}{8}\)\(=\frac{a^2+b^2+c^2+2abc}{2}-\frac{1}{2}\left(c-\frac{1}{2}\right)^2+\frac{1}{8}\le\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)