K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

post ít một thôi

6 tháng 12 2019

Đặt \(m=a^2+bc\);\(n=b^2+2ca\);\(p=c^2+2ab\)

Lúc đó: \(m+n+p=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=\left(a+b+c\right)^2< 1\)(vì a + b + c < 1 )

\(BĐT\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge9\)và m + n + p < 1 ; m,n,p > 0 

Áp dụng BĐT Cô -si cho 3 số không âm:

\(m+n+p\ge3\sqrt[3]{mnp}\)

và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge3\sqrt[3]{\frac{1}{mnp}}\)

\(\Rightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)

Mà m + n + p < 1 nên \(\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge9\)

hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge9\)

19 tháng 1 2019

Ta có:

\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge a+b+c\)

\(\Leftrightarrow\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge0\)

\(\Leftrightarrow\frac{c^3-a^3}{a^2}+\frac{a^3-b^3}{b^2}+\frac{b^3-c^3}{c^2}\ge0\)

\(\Leftrightarrow\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)

Dễ thấy: mẫu dương nên:

\(\frac{c^5b^2-a^3b^2c^2+a^5c^2-b^3a^2c^2+b^5a^2-c^3a^2b^2}{a^2b^2c^2}\ge0\)

\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2-a^2b^2c^2\left(a+b+c\right)\ge0\Leftrightarrow\)

\(\Leftrightarrow c^5b^2+a^5c^2+b^5a^2+c^5b^2+a^5c^2+b^5a^2-2a^2b^2c^2\left(a+b+c\right)\ge0\)

Chưa nghĩ ra tiếp :v

19 tháng 1 2019

\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\)

\(=\left(\frac{a^3}{b^2}+a\right)+\left(\frac{b^3}{c^2}+b\right)+\left(\frac{c^3}{a^2}+c\right)-a-b-c\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\sqrt{\frac{a^3.a}{b^2}}+2.\sqrt{\frac{b^3.b}{c^2}}+2.\sqrt{\frac{c^3.c}{a^2}}-a-b-c\)\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)

Áp dụng BĐT Cauchy schwarz ta có: 

\(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}-a-b-c\ge2.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)-a-b-c\)\(\ge2\left[\frac{\left(a+b+c\right)^2}{a+b+c}\right]-a-b-c=2\left(a+b+c\right)-a-b-c=a+b+c\)

                                                                                                        (  đpcm )

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

18 tháng 5 2017

câu này sai rồi. với a = b = c = 1 thì BĐT không đúng.