Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay 1=\(\frac{a^2+b^2+c^2}{3}\)vào va rút gọn ta được
VT= \(\frac{4}{3}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3}\left(\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{a}\right)+\frac{1}{3}\left(a+b+c\right)\)(1)
Áp dụng \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(bunhiacopxky\right)\) ta được
(1) \(\ge\frac{4}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\left(a+b+c\right)=2\left(a+b+c\right).\)
Dấu'=' khi a=b=c
1/ Ta cần c/m: \(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
Tức là \(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)
Ta có đpcm.
\(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow\)\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{16}\le\frac{49}{16}\)
\(\Leftrightarrow\)\(\left[2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\right]^2\le\frac{49}{16}\)
\(\Leftrightarrow\)\(\frac{-7}{4}\le2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\le\frac{7}{4}\)
\(\Leftrightarrow\)\(\frac{-3}{4}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
Có : \(\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\le\frac{1}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=3\)
...
Từ giả thiết suy ra \(3\left(a^2b^2+b^2c^2+c^2a^2\right)\le\left(a^2+b^2+c^2\right)^2=9\to a^2b^2+b^2c^2+c^2a^2\le3.\)
Theo bất đẳng thức Cauchy-Schwart ta có \(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^3+3}}\ge\frac{4a^4}{a^2b^2+3a^2+4}+\frac{4b^4}{b^2c^2+3b^2+4}+\frac{4c^4}{c^2a^2+3c^2+4}\)
\(\ge\frac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2b^2+b^2c^2+c^2a^2\right)+3\left(a^2+b^2+c^2\right)+12}\ge\frac{4\times3^2}{3+3\cdot3+12}=\frac{3}{2}.\)
Dấu bằng xảy ra khi \(a=b=c=1\to\) giá trị bé nhất của P là \(\frac{3}{2}.\)
- bạn ghi rõ cái phần bất đẳng thức cauchy đc ko mk ko hiểu