K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

Đặt \(N=a^2+b^2+c^2+d^2\)

Áp dụng BĐT Bunhiacopxki , ta có ; \(4N=\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\ge\left(4.\sqrt[4]{abcd}\right)^2=16\)

\(\Rightarrow N\ge4\)

Đẳng thức xảy ra khi \(a=b=c=d=1\)

Vậy min N = 4 <=> a = b = c = d = 1

Đặt N\(\text{=a2+b2+c2+d2}\)

Áp dụng BĐT Bunhiacopxki , ta có ; 4N=\(\text{(12+12+12+12)(a2+b2+c2+d2)≥(a+b+c+d)2≥(4.4√abcd)2=16}\)

\(\text{⇒N≥4}\)

Đẳng thức xảy ra khi\(\text{ a=b=c=d=1}\)

Vậy min N = 4 <=> a = b = c = d = 1

7 tháng 9 2015

Từ giả thiết suy ra \(3\left(a^2b^2+b^2c^2+c^2a^2\right)\le\left(a^2+b^2+c^2\right)^2=9\to a^2b^2+b^2c^2+c^2a^2\le3.\)

Theo bất đẳng thức Cauchy-Schwart ta có \(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^3+3}}\ge\frac{4a^4}{a^2b^2+3a^2+4}+\frac{4b^4}{b^2c^2+3b^2+4}+\frac{4c^4}{c^2a^2+3c^2+4}\)
\(\ge\frac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2b^2+b^2c^2+c^2a^2\right)+3\left(a^2+b^2+c^2\right)+12}\ge\frac{4\times3^2}{3+3\cdot3+12}=\frac{3}{2}.\)
Dấu bằng xảy ra khi \(a=b=c=1\to\) giá trị bé nhất của P là \(\frac{3}{2}.\)

16 tháng 4 2018
  • bạn ghi rõ cái phần bất đẳng thức cauchy đc ko mk ko hiểu
8 tháng 9 2016

ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^

10 tháng 9 2016

nè  đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\

25 tháng 10 2019

Thay 1=\(\frac{a^2+b^2+c^2}{3}\)vào va rút gọn ta được

VT= \(\frac{4}{3}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3}\left(\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{a}\right)+\frac{1}{3}\left(a+b+c\right)\)(1)

Áp dụng \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(bunhiacopxky\right)\) ta được

(1) \(\ge\frac{4}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\left(a+b+c\right)=2\left(a+b+c\right).\)

Dấu'=' khi a=b=c