Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
\(A=\frac{2016a}{ab+2016a+abc}+\frac{b}{bc+b+2016}+\frac{bc}{abc+bc+b}\)
\(A=\frac{2016a}{a\left(b+2016+bc\right)}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016}{b+2016+bc}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016+b+bc}{2016+b+bc}=1\)
Thay : 2016 = abc
ta có :
\(A=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(A=\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(A=\frac{ac+c+1}{ac+c+1}\)
\(A=1\)
vậy \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}=1\)
Chúc bạn học tốt !
\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)
\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)
\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)
\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)
Dấu = xảy ra khi ....
tìm x y z biết
\(\sqrt{2016.x^2+4}+\sqrt{2017y^2+9}=9-\sqrt{2019z^2+25}\)
đăng bài này nè
a) Gọi số đo của các goác lần lượt là x,y,z
Theo đề bài ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=180\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{180}{9}=20\)
=>\(\begin{cases}x=40\\y=60\\z=80\end{cases}\)
vì các góc của tam giác tỉ lệ vs 2,3,4 nen ế gọi các góc lần lượt là a,b,c thì a/2=b/3=c/4 vì a,b,c là 3 góc của tam giác nên a+b+c=180
áp dụng gì đó ko nhớ có
a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=> a/2=20 nên a=40cm
b/3=20 nên b=60cm
c/4=20 nên c=80cm
vậy 3 cạnh là 40cm,60cm và 80cm