Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Tương tự cho 2 cái kia rồi cộng lại
\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)
Ta có
\(\sum\dfrac{a}{a+\sqrt{2019a+bc}}=\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\)
Áp dụng AM - GM : \(b+c\ge2\sqrt{bc}\)
\(\Rightarrow\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\le\dfrac{a}{a+\sqrt{a^2+2a\sqrt{bc}+bc}}\)
\(=\sum\dfrac{a}{a+\sqrt{\left(a+\sqrt{bc}\right)^2}}=\sum\dfrac{a}{a+a+\sqrt{bc}}\)
Tự làm tiếp
Ta có \(\dfrac{1}{\text{1+a}}\)+\(\dfrac{1}{1+b}\)+\(\dfrac{1}{1+c}\)≥2
→\(\dfrac{1}{\text{1+a}}\)≥{1-\(\dfrac{1}{1+b}\)}+{1-\(\dfrac{1}{1+c}\)}
↔\(\dfrac{1}{\text{1+a}}\)≥\(\dfrac{b}{1+b}\)+\(\dfrac{c}{1+c}\)
≥2.√(bc)/{(1+b)(1+c)}(theo cosi)
Hai bất đẳng thức tương tự rồi nhân vế với vế
1/{(1+a)(1+b)(1+c)≥8.abc/{(1+a)(1+b)(1...
↔abc≤1/8
Tick nha
Đặt : \(x=\frac{1}{a};y=\frac{2}{b};z=\frac{3}{c}\)
Khi đó điều kiện bài toán thành : \(2xyz\ge2x+4y+7z\)
và \(E=x+y+z\)
\(\Rightarrow z\left(2xy-7\right)\ge2x+4y\)
\(\Leftrightarrow2xy>7\)và \(z\ge\frac{2x+4y}{2xy-7}\)
Ta có : \(\left(x+y+z\right)\ge x+y+\frac{2x+4y}{2xy-7}\)
\(\Leftrightarrow\left(x+y+z\right)\ge x+\frac{11}{2x}+y-\frac{7}{2x}+\frac{2x+\frac{14}{x}}{2xy-7}\)
mà \(2\sqrt{1+\frac{7}{x^2}}\ge\frac{3+\frac{7}{x}}{2}\)
\(\Rightarrow x+y+z\ge\frac{3}{2}+x+\frac{9}{2}\ge\frac{15}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{3};b=\frac{4}{5};c=\frac{3}{2}\left(x=3;y=\frac{5}{2};z=2\right)\)
_Hắc phong_
Đặt \(x=\frac{1}{a};y=\frac{2}{b};z=\frac{3}{c}\)
Khi đó ta được điều kiện : \(2xyz\ge2x+4y+7z\)
Áp dụng bất ẳng thức AM-GM ta thấy rằng :
\(x+y+z=\frac{1}{15}.\left(\frac{5}{2}x+\frac{5}{2}x+....+\frac{5}{2}x+3y+3y+.....+3y+\frac{15}{4}z+\frac{15}{4}z+...+\frac{15}{4}z\right)\)
(6 số \(\frac{5}{2}x\)) (5 số\(3y\)) (4 số\(\frac{15}{4}z\))
\(\ge\left(\frac{5x}{2}\right)^{\frac{2}{5}}\left(3y\right)^{\frac{1}{3}}\left(\frac{15z}{4}\right)^{\frac{4}{15}}\)
Và cũng có :
\(2x+4x+7z=\frac{1}{15}\left(10x+...+10x+12y+...+12y+15z+..+15z\right)\)
(3 số\(10x\)) (5 số\(12y\)) (7 số\(15z\))
\(\ge10^{\frac{1}{5}}.12^{\frac{1}{3}}.15^{\frac{7}{15}}.x^{\frac{1}{5}}.y^{\frac{1}{3}}.z^{\frac{7}{15}}\)
Điều này có nghĩa là :
\(\left(x+y+z\right)^2\left(2x+4y+7z\right)\ge\frac{225}{2}xyz\)
Vì \(2xyz\ge2x+4y+7z\)nên ta có :
\(\left(x+y+z\right)^2\ge\frac{225}{4}\Rightarrow x+y+z\ge\frac{15}{2}\)
Dấu"="xảy ra kh\(x=2;y=\frac{5}{2};=2\)
Từ đó suy ra
\(a=\frac{1}{3};b=\frac{4}{5};c=\frac{3}{2}\)
P/s : \(min_E=\frac{15}{2}\)
_Minh ngụy_
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Đặt \(\left\{\begin{matrix}a=\frac{1}{3x} & & \\ b=\frac{4}{5y} & & \\c=\frac{3}{2z} \end{matrix}\right.\)\((x,y,z>0)\)
Khi đó \(21a+2bc+8ca\leq12 \Leftrightarrow 3x+5y+7x \leq 15xyz\)
Áp dụng BĐT AM-GM ta có:
\(3x+5y+7z\geq 15\sqrt[15]{x^3y^5z^7}\)
\(\Rightarrow 15xyz\geq 15\sqrt[15]{x^3y^5z^7}=>x^6y^5z^4\geq 1\)
Ta có: \(P = 3x + 2.\dfrac{5}{4}y + 3.\dfrac{2}{3}z \)
\(= \dfrac{1}{2}(6x + 5y + 4z) \ge \dfrac{1}{2}.15\sqrt[{15}]{{{x^6}{y^5}{z^4}}} \ge \dfrac{{15}}{2}\)
Đẳng thức xảy ra khi \(x=y=z=1\) hay \(\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{4}{5}\\c=\dfrac{3}{2}\end{matrix}\right.\)