\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(\dfrac{1}{\text{1+a}}\)+\(\dfrac{1}{1+b}\)+\(\dfrac{1}{1+c}\)≥2

\(\dfrac{1}{\text{1+a}}\)≥{1-\(\dfrac{1}{1+b}\)}+{1-\(\dfrac{1}{1+c}\)}
\(\dfrac{1}{\text{1+a}}\)\(\dfrac{b}{1+b}\)+\(\dfrac{c}{1+c}\)
≥2.√(bc)/{(1+b)(1+c)}(theo cosi)
Hai bất đẳng thức tương tự rồi nhân vế với vế
1/{(1+a)(1+b)(1+c)≥8.abc/{(1+a)(1+b)(1...
↔abc≤1/8

Tick nha

2 tháng 7 2017

b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 cái kia rồi cộng lại

\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)

2 tháng 7 2017

Mik ko hỉu pn ơi, ngay bước đầu ý

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

14 tháng 7 2018

Ta có \(\dfrac{1}{1+x}\ge1-\dfrac{1}{1+y}+1-\dfrac{1}{1+x}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\)

\(\ge2\sqrt{\dfrac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Chứng minh tương tự, ta có

\(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(z+1\right)\left(x+1\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(x+1\right)\left(y+1\right)}}\)

Nhân cả 3 cua 3 BĐT cùng chiều, ta có

\(\dfrac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\dfrac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\Rightarrow xuz\le\dfrac{1}{8}\left(ĐPCM\right)\)

30 tháng 10 2018

mình sửa và bổ sung ở phép cuối là xyz≤\(\dfrac{1}{8}\).bất đẳng thức xảy ra⇔x=y=z=\(\dfrac{1}{2}\) hihi

2 tháng 8 2018

\(\left\{{}\begin{matrix}\dfrac{1}{a+2}=\dfrac{1}{2}-\dfrac{1}{b+2}+\dfrac{1}{2}-\dfrac{1}{c+2}=\dfrac{b}{2\left(b+2\right)}+\dfrac{c}{2\left(c+2\right)}\ge\sqrt{\dfrac{bc}{\left(b+2\right)\left(c+2\right)}}\\\dfrac{1}{b+2}\ge\sqrt{\dfrac{ca}{\left(c+2\right)\left(a+2\right)}}\\\dfrac{1}{c+2}\ge\sqrt{\dfrac{ab}{\left(a+2\right)\left(b+2\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\Leftrightarrow abc\le1< \dfrac{9}{8}\)

Đề sai !

Giả sử \(a=b=c=1\) thay vào phương trình đầu thì :

\(\dfrac{1}{1+2}+\dfrac{1}{1+2}+\dfrac{1}{1+2}=1\) ( Thỏa mãn )

Nhưng \(1.1.1< \dfrac{1}{8}\) ( vô lí )

15 tháng 8 2018

a/ Xét hiệu: \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng) (đpcm)

''='' xảy ra khi a = b

b/ Sửa đề chút nhé: CMR:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\)

Áp dụng bđt AM-GM có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}\cdot\dfrac{1}{b}}=2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\);

Tương tự ta có:

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\); \(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{ac}}\)

Cộng 2 vế ba bđt trên ta được:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\left(đpcm\right)\)

''='' xảy ra khi a = b = c

20 tháng 8 2018

Cảm ơn nha. À mà mik ấn lộn đề.

30 tháng 9 2018

Áp dụng BĐT: x2+y2+z2\(\ge\)xy+yz+zx ( với x,y,z >0)

Ta có\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\)\(\ge\)\(\dfrac{a^4b^4+b^4c^4+c^4a^4}{a^3b^3c^3}\)

\(\ge\)\(\dfrac{a^4b^2c^2+b^4c^2a^2+c^4a^2b^2}{a^3b^3c^3}\)=\(\dfrac{a^2+b^2+c^2}{abc}\)\(\ge\)\(\dfrac{ab+bc+ca}{abc}\)

= \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)

Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c

22 tháng 10 2017

Ta đi chứng minh BĐT : \(a^2+b^2+c^2\ge2\left(bc+ac-ab\right)\)

\(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) luôn đúng.

\(\Rightarrow2\left(bc+ac-ab\right)\le\dfrac{5}{3}\)

\(\Leftrightarrow bc+ac-ab\le\dfrac{5}{6}< 1\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)