K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DM
31 tháng 1 2018

Áp dụng bất đẳng thức Cô si cho ba số dương ta có    \(a+b+c\ge3\sqrt[3]{abc}\) và  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\). Do đó nếu  đặt \(t=\sqrt[3]{abc}\) t hì      \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(t+\frac{1}{t}\right)\) . Chú ý rằng từ giả thiết 

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=1\) suy ra  \(a^2+b^2+c^2=abc\) từ đó  

             \(abc=a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow a^3b^3c^3\ge27a^2b^2c^2\Rightarrow abc\ge27\)\(\Rightarrow t\ge3\).

Do đó   \(t+\frac{1}{t}=\frac{8t}{9}+\frac{t}{9}+\frac{1}{t}\ge\frac{8.3}{9}+2\sqrt{\frac{t}{9}.\frac{1}{t}}=\frac{10}{3}\). Suy ra  

                               \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(t+\frac{1}{t}\right)\ge\frac{3.10}{3}=10\)

Đẳng thức xảy ra khi và chỉ khi        \(\hept{\begin{cases}a=b=c>0\\t=\sqrt[3]{abc}=3\\a^2+b^2+c^2=abc\end{cases}}\)\(\Leftrightarrow a=b=c=3\).

15 tháng 4 2019

\(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a^2+b^2+c^2}\)

\(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{9-2\left(ab+bc+ca\right)}\)

\(P=\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}+\frac{1}{9-2\left(ab+bc+ca\right)}+\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(P\ge\frac{16}{3ab+3bc+3ca+9-2\left(ab+bc+ca\right)}+\frac{2}{3}\left(\frac{9}{ab+bc+ca}\right)\)

\(P\ge\frac{16}{9+ab+bc+ca}+\frac{6}{ab+bc+ca}\)

Sử dụng đánh giá quen thuộc:\(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)

\(\Rightarrow ab+bc+ca\le3\)

\(\Rightarrow P\ge\frac{16}{9+3}+\frac{6}{3}=2+\frac{4}{3}=\frac{10}{3}\)

"="<=>a=b=c=1

3 tháng 11 2019

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bdt Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)--\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

12 tháng 10 2019

\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)

Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng BĐT Cauchy ta có :

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=3\)

Chúc bạn học tốt !!!

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

8 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{6}=\frac{3}{2}\)

\(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+bc+ca}\ge\frac{27}{\left(a+b+c\right)^2}=\frac{27}{36}=\frac{3}{4}\)

\(\frac{1}{abc}\ge\frac{1}{\left(\frac{a+b+c}{3}\right)^3}=\frac{27}{\left(a+b+c\right)^3}\ge\frac{27}{6^3}=\frac{1}{8}\)

Cộng lại ta được:

\(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\frac{27}{8}\left(đpcm\right)\)

Dấu "=" xảy ra tại \(a=b=c=2\)

2 tháng 7 2017

Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)

\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)

cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=2

Vậy minA=3/2 khi a=b=c=2

13 tháng 7 2019

Ctv lá láo gì abj 

NV
20 tháng 6 2019

Ta chứng minh được

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta lại chứng minh được:

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đây là bài thi vào 10 của Thanh Hóa thì phải

20 tháng 6 2019

Anh ơi sao e ko nhắn đc cho anh nhỉ??!