Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: (a+b)/3 = (b+c)/4 =>4a+4b=3b+3c=>4a+b-3c=0 (1)
ta có : (b+c)/3=(c+a)/5=> 5b+5c=4c+4a => 4a-5b-c=0=> 4a= 5b+c (2)
ta có: (c+a)/5=(a+b)/3 => 5a+5b= 3c+3a => 2a+5b-3c=0 => 3c=2a+5b (3)
THay (2) vào (1) ta dc:c = 3b
tay (3) vao (1) ta đc: a = 2b
M= 8a-b-5c+2016=8.2b-b-5.3b+2016=2016. HẾT
Theo đề bài ta có:
\(\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)
\(\dfrac{b}{b+c}< \dfrac{b+a}{b+c+a}\)
\(\dfrac{c}{c+a}< \dfrac{c+b}{b+c+a}\)
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{b+c+a}+\dfrac{c+b}{b+c+a}\)
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c+b+a+c+b}{a+b+c}\)
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
\(\rightarrowđpcm\)
Vì b>0; d>0 nên b+d>0
Ta có: a/b<c/d =>ad<bc(*)
Thêm ab vào 2 vế (*) , ta có:
ab+ad<ba+bc
a(b+d)<b(a+c)
=>a/b<a+c/b+d(1)
Thêm cd vào 2 vế (*), ta được:
ad+cd<cb+cd
(a+c)d<c(b+d)
=>a+c/b+d<c/d(2)
Từ 1,2 =>a/b<a+c/b+d<c/d (b,d<0)
Ta có :
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< ac\Leftrightarrow ab+ad< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\)\(\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)