Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(VP=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)\(\left(a,b,c\ne0\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2.\left(a+b+c\right)}{abc}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=VT\)
Vậy đẳng thức được chứng minh
ta có: (a+b+c)2 = a2 + b2 + c2
=> 2.(ab+ac+bc) = 0
ab + ac + bc = 0
=> 1/a + 1/b + 1/c = 0
Lại có: \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right).\)
\(=0.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)=0\)
=> 1/a3 + 1/b3 + 1/c3 -3/abc = 0
=> 1/a3 + 1/b3 + 1/c3 = 3/abc
Từ đkđb
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Hớ hớ bài này mình cũng làm rồi.
Ta có: (a+b+c)2=a2+b2+c2
<=> a2+b2+c2+2(ab+bc+ca)=a2+b2+c2
<=>2(ab+bc+ca)=0
<=>ab+bc+ca=0
\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=>\(\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\)
=> \(\dfrac{1}{a^3}+\dfrac{3}{a^2b}+\dfrac{3}{ab^2}+\dfrac{1}{b^3}=-\dfrac{1}{c^3}\)
=>\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{3}{ab}.\left(-\dfrac{1}{c}\right)=\dfrac{3}{abc}\)
=> Đpcm.
\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}=\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(b+c\right)^2-2bc-a^2}+\frac{1}{\left(c+a\right)^2-2ac-b^2}=\frac{1}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\frac{1}{\left(b+c+a\right)\left(b+c-a\right)-2cb}+\frac{1}{\left(c+a+b\right)\left(c+a-b\right)-2ac}=-\frac{1}{2}.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=-\frac{1}{2}.\frac{c+a+b}{abc}=-\frac{1}{2}\)