K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

ta có: (a+b+c)2 = a2 + b2 + c2

=> 2.(ab+ac+bc) = 0

ab + ac + bc = 0

=> 1/a + 1/b + 1/c = 0

Lại có: \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right).\)

                                                                \(=0.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)=0\)

=> 1/a3 + 1/b3 + 1/c3  -3/abc = 0

=> 1/a3 + 1/b3 + 1/c3 = 3/abc