Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2=a^2+b^2+c^2 \Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
<=> \(ab+bc+ac=0\Leftrightarrow\frac{ab+ac+bc}{abc}=0\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\frac{1}{c^3}\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+3.\frac{1}{a^2}.\frac{1}{b}+3.\frac{1}{a}.\frac{1}{b^2}=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab}\left(\frac{-1}{c}\right)=0\Leftrightarrow\)dpcm
ta có: a+b+c=1
<=>(a+b+c)^2=1
<=>ab+bc+ca=0 (1)
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z)
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x...
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2)
từ (1) và (2) ta có đpcm
Chúc bạn học giỏi!
:3
ta có: a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = (a+b+c).(a2 + b2 + c2 - ab - bc -ac) = 0
mà a + b + c khác 0
=> a2 + b2 + c2 - ab - bc - ac = 0
=> a = b = c
\(\Rightarrow A=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{3^2.a^2}=\frac{1}{3}.\)
1) \(Q=\frac{x^2-2x-1}{x^2}=1-\frac{2}{x}-\frac{1}{x^2}\). Đặt \(y=\frac{1}{x}\), ta có :
\(Q=-y^2-2y+1=-\left(y^2+2y+1\right)+2=-\left(y+1\right)^2+2\le2\)
Dấu "=" xảy ra \(\Leftrightarrow y=-1\Leftrightarrow\frac{1}{x}=-1\Leftrightarrow x=-1\)
Vậy Max Q = 2 tại x = -1
a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)
\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)