Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right).\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)
\(P=c\left(b+c\right)\left(a+c\right)=c.\left(-a\right).\left(-b\right)=abc\)
\(\Rightarrow\)\(M=N=P\)
\(M=a\left(a+b\right)\left(a+c\right)=a\left(a^2+ac+ba+bc\right)\)
\(=a^3+a^2c+a^2b+abc=a^2\left(a+b+c\right)+abc\)
\(=a^20+abc=abc\) (1)
\(N=b\left(b+c\right)\left(b+a\right)=b\left(b^2+ba+cb+ca\right)\)
\(=b^3+b^2a+b^2c+abc=b^2\left(a+b+c\right)+abc\)
\(=b^20+abc=abc\) (2)
\(P=c\left(c+a\right)\left(c+b\right)=c\left(c^2+cb+ac+ab\right)\)
\(=c^3+c^2b+c^2a+abc=c^2\left(a+b+c\right)+abc\)
\(c^20+abc=abc\) (3)
từ (1);(2)và(3) ta có : \(M=N=P=abc\)
vậy khi \(\left(a+b+c\right)=0\)thì \(M=N=P\) (đpcm)
a + b + c = 0 \(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}M=a.\left(-c\right).\left(-b\right)=abc\\N=b.\left(-a\right).\left(-c\right)=abc\\P=c.\left(-b\right).\left(-a\right)=abc\end{cases}\Rightarrow M=N=P}\)
Ta có : a+b+c=0
Suy ra :a+b=-c ; a+c=-b và b+c=-a
Nên : M=a(a+b)(a+c)
=a.(-c).(-b)=abc (1)
N=b(b+c)(b+a)
=b.(-a).(-c)=abc (2)
Và : P=c(c+a)(c+b)
=c.(-b).(-a)=abc (3)
Từ (1)(2) và (3) suy ra : Đpcm
a( a - b ) + b( b - c ) + c( c - a ) = 0
<=> a2 - ab + b2 - bc + c2 - ca = 0
Nhân 2 vào từng vế
<=> 2( a2 - ab + b2 - bc + c2 - ca ) = 2.0
<=> 2a2 - 2ab + 2b2 - 2bc + 2c2 - 2ca = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
=> đpcm
a ( a - b ) + b ( b - c ) + c ( c - a ) = 0
<=> a2 + b2 + c2 - ab - bc - ca = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
Mà ( a - b )2 + ( b - c )2 + ( c - a )2 \(\ge\)0\(\forall\)a ; b ; c
Dấu "=" xảy ra <=> a = b = c ( đpcm )
Do a+b+c = 0
=>\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
=>\(\hept{\begin{cases}M=a\left(-c\right)\left(-b\right)=abc\\E=b\left(-a\right)\left(-c\right)=abc\\H=c\left(-b\right)\left(-a\right)=abc\end{cases}}\)
=> M = E = H
Ta có: a+b+c=0
=>a+b=0-c
a+c=0-b
b+a=0-c
b+c=0-a
c+a=0-b
c+b=0-a
Lại có:
M=a(a+b)(a+c)=a(0-c)(0-b)=0.a.(0-b)-c.a.(0-b)=0-0.c.a+a.b.c=0-0+abc=abc
N=b(b+c)(b+a)=b(0-a)(0-c)=0.b.(0-c)-a.b.(0-c)=0-0.a.b+a.b.c=0-0+abc=abc
P=c(c+a)(c+b)=c(0-b)(0-a)=0.c.(0-a)-b.c.(0-a)=0-0.b.c+a.b.c=0-0+abc=abc
=> M=N=P=abc
Vậy M=N=P
Ta có: \(a+b+c=0\)
=> \(a+b=-c;a+c=-b;b+c=-a\)
Do đó:
\(M=a\left(a+b\right)\left(a+c\right)=a\left(-c\right)\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(b+a\right)=b\left(-a\right)\left(-c\right)=abc\)
\(P=c\left(c+a\right)\left(c+b\right)=c\left(-b\right)\left(-a\right)=abc\)
=> M=N=P ( = abc)
Ta có : a + b + c = 0
=> a + b = -c ; a + c = -b ; b + c = -a
Thế vào M, N, P :
=> M = a.(-c).(-b) = -abc
N = b.(-a).(-c) = -abc
P = c.(-b).(-a) = -abc
Vậy M = N = P.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\) \(\Rightarrow B=0\)
\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
\(\Rightarrow a.\left(-c\right).\left(-b\right)=b.\left(-a\right).\left(-c\right)\)
\(\Rightarrow a.b.c=a.b.c\) ( luôn đúng )
Ta có:
\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
⇒ a.(a+b).(a+c)=b.(b+c).(b+a)
\(\Rightarrow\) a.(−c).(−b)=b.(−a).(−c)
⇒a.b.c=a.b.c
Vậy khi a+b+c = 0 thì : a.(a+b).(a+c)=b.(b+c).(b+a)