\(a+b+c=0\). Chứng minh \(a^3+b^3-c^3=3abc\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

Sửa đề: a^3+b^3+c^3=3abc

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

=>ĐPCM

8 tháng 11 2018

Ta có \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ac+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(tm\right)\\a=b=c\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow a+b+c=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\)

Ta có \(P=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\Leftrightarrow abc.P=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b+c-a\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)=b\left(a-b\right)\left(a-c\right)-c\left(b-a\right)\left(c-a\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\Leftrightarrow P=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}\)\(Q=\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).Q=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-\left(c+b\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-c\left(a-b\right)\left(c-a\right)-b\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(c-a\right)\left(2b-c-a\right)-b\left(a-b\right)\left(2c-a-b\right)=c\left(c-a\right)3b-b\left(a-b\right)3c=3bc\left(b+c-2a\right)=-9abc\Leftrightarrow Q=\dfrac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)Vậy \(P.Q=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}.\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=9\)

22 tháng 9 2019

Em ko chắc đâu nha! Mới học dạng này thôi ak.. Với cả em phải thêm đk mới giải đc:(

Thêm đk a, b, c > 0

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(p;q;r\right)\) thì \(p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)

Cần chứng minh: \(1+3r\ge p^3-3pq+3r\Leftrightarrow p^3-3pq\le1\)(*)

Ta có \(LHS_{\text{(*)}}=p\left(p^2-2q-q\right)=p\left(1-q\right)=p\left(1-\frac{p^2-1}{2}\right)\)

\(=p-\frac{p^3-p}{2}=\frac{3p-p^3}{2}=\frac{-\left(p-1\right)^2\left(p+2\right)}{2}+1\le1\)

Đẳng thức xảy ra khi (a;b;c) = (0;0;1) và các hoán vị của nó (em chả biết giải thích thế nào nữa:(

22 tháng 9 2019

À không cần đk a, b, c > 0. Vì ta có:

\(1=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow3\ge\left(a+b+c\right)^2\)

\(\Rightarrow\sqrt{3}\ge a+b+c\ge-\sqrt{3}>-2\)

Như vậy \(a+b+c+2>0\Rightarrow p+2>0\) và bđt cuối là đúng!

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

8 tháng 8 2019

a, \(BĐT\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\) (luôn đúng vì a,b>0)

Dấu "=" xảy ra <=> a=b

b, Áp dụng bđt câu a ta có: \(a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

=>\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng 3 bđt vế theo vế ta được:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=1\left(đpcm\right)\)

Dấu "=" xảy ra <=> a=b=c=1

AH
Akai Haruma
Giáo viên
1 tháng 3 2019

Lời giải:

Nếu PT đã cho có 2 nghiệm phân biệt $x_1,x_2$ thì theo định lý Vi-et ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a}\end{matrix}\right.\). Thay \(x_1=x_2^2\) ta có:

\(\left\{\begin{matrix} x_2^2+x_2=\frac{-b}{a}\\ x_2^3=\frac{c}{a}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_2^2+x_2=\frac{-b}{a}\\ x_2=\sqrt[3]{\frac{c}{a}}\end{matrix}\right.\)

\(\Rightarrow \sqrt[3]{\frac{c^2}{a^2}}+\sqrt[3]{\frac{c}{a}}=\frac{-b}{a}\)

\(\Rightarrow \sqrt[3]{c^2a}+\sqrt[3]{ca^2}=-b\). Đặt \(\sqrt[3]{c^2a}=m; \sqrt[3]{ca^2}=n; b=p\)

Khi đó: \(m+n=-p\)

Suy ra:

\(b^3+a^2c+ac^2=p^3+n^3+m^3=p^3+(n+m)^3-3nm(n+m)\)

\(=p^3+(-p)^3-3nm(-p)=3nmp=3\sqrt[3]{ca^2}.\sqrt[3]{c^2a}.b=3abc\) .

Ta có đpcm.

6 tháng 1 2016

thay a,b,c vào ,,,,,,,,,rút

15 tháng 11 2018

\(a^3+b^3+c^3=3abc\\ \left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Do \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Rightarrow a=b=c\)

=>P=20093