Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)
Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
Umk !!! giúp liền nàk
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)nên
\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
\(=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)
\(=\frac{a^2}{-c\left(a-b\right)-c^2}+\frac{b^2}{-a\left(b-c\right)-a^2}+\frac{c^2}{-b\left(c-a\right)-b^2}\)
\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)
\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(b+c\right)+ab}\)
\(=\frac{a^2}{-c\left(-b\right)+bc}+\frac{b^2}{\left(-a\right)\left(-c\right)+ac}+\frac{c^2}{-b\left(-a\right)+ab}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)
Mà a + b +c = 0 nên \(a^3+b^3+c^3=3abc\) (tự chứng minh)
Do đó \(\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)
Vậy \(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{3}{2}\)
trả ơn này
Vì a + b + c = 0
\(\Rightarrow\)a2 = b2 + c2 + 2bc \(\Rightarrow\) a2 - b2 - c2 = 2bc
\(\Rightarrow\)b2 = a2 + c2 + 2bc\(\Rightarrow\) b2 - a2 - c2 = 2bc
\(\Rightarrow\) c2 = a2 + c2 +2ab\(\Rightarrow\)c2 - b2 - a2 = 2ab
còn lại tự làm nhé
Ta có: a+b+c=0\(\Leftrightarrow\)b+c=-a
Bình phương hai vế có: (b+c)2=a2
⇔ b2+2bc+c2=a2\(\Leftrightarrow\) b2+c2-a2=-2bc
Tương tự, ta có: c2+a2-b2=-2ca
a2+b2-c2=-2ab
→ A=\(-\dfrac{1}{2bc}-\dfrac{1}{2ca}-\dfrac{1}{2ab}=\dfrac{-\left(a+b+c\right)}{2abc}=0\)(vì a+b+c=0)
Vậy A=0
a: Khi x=64 thì \(A=\dfrac{2}{8-2}=\dfrac{2}{6}=\dfrac{1}{3}\)
b: \(P=B:A\)
\(=\dfrac{3\sqrt{x}+\sqrt{x}-2-2\left(\sqrt{x}+2\right)}{x-4}:\dfrac{2}{\sqrt{x}-2}\)
\(=\dfrac{4\sqrt{x}-2-2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}\)
\(=\dfrac{2\sqrt{x}-6}{2\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
c: P<0
=>căn x-3<0
=>0<=x<9
mà x nguyên và x<>4
nên \(x\in\left\{0;1;2;3;5;6;7;8\right\}\)
Ta có: \(M=a^3+b^3+c\left(a^2+b^2\right)-abc\)
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2-ab\right)\)
\(M=\left(a+b+c\right)\left(a^2+b^2-ab\right)\)
\(M=0.\left(a^2+b^2-ab\right)\)
\(M=0\)
Vậy \(M=0\)
\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)
M = (a + b)(a2 - ab + b2) + c(a2 + b2) - abc
= - c(a2 - ab + b2) + c(a2 - ab + b2) = 0