K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

A B C K H I

a)Vì tam giác ABC vuông tại A nên AB vuông góc với AC mà HK vuông góc với AC nên AB//HK

b)Ta có: ^AHK=^AHI=900 mà HI=HK nên AH là đường trung trực của KI

=>AK=AI(tính chất đường trung trực của đoạn thẳng)

nên tam giác AKI cân tại A

c)Vì tam giác AKI cân tại A nên ^AKI=^AIK(1)

Vì AB//HK nên ^BAK=^AKI( 2 góc sole trong)(2)

Từ (1);(2) => ^BAK=^AIK

d)Vì tam giác AIK có ^AHK=^AHI=900 nên AH là đường cao của tam giác AKI mà tam giác AKI cân tại A nên AH cũng là đường phân giác của tam giác AKI(tính chất đường cao, tia phân giác, đường trung trực, đường trung tuyến của một tam giác cân từ đỉnh đến cạnh đáy đối diện) hay ^KAH=^IAH

Xét tam giác AKC và tam giác AIC có:

AC là cạnh chung

^KAH=^IAH(CMT)

 AK=AI(CMT)

Do đó, tam giác AKC=tam giác AIC(c.g.c)

=>^AKC=^AIC(2 góc tương ứng)

31 tháng 5 2020

.

4 tháng 5 2016

Mk ko hiểu bạn ghi chỗ Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH  AC

4 tháng 5 2016

Vẽ KH // AC hay \(KH\perp AC\) vậy bạn ?

a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có 

DB=EC

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔDBH=ΔECK

Suy ra: HB=CK

b: Xét ΔAHB và ΔAKC có

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

Do đó: ΔAHB=ΔAKC

c: Xét tứ giác HKED có

HD//KE

HD=KE

Do đó: HKED là hình bình hành

Suy ra: HK//DE

d: Xét hình bình hành HKED có \(\widehat{KHD}=90^0\)

nên HKED là hình chữ nhật

Suy ra: HE=KD

Xét ΔAHE và ΔAKD có 

AH=AK

HE=KD

AE=AD

Do đó: ΔAHE=ΔAKD

a: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra:AC//BE và AC=BE

b: Xét tứ giác AIEK có

AI//EK

AI=EK

Do đó: AIEKlà hình bình hành

Suy ra: AE cắt IK tại trung điểm của mỗi đường

=>M là trung điểm của IK

hay I,M,K thẳng hàng

4 tháng 6 2017

A B C D E I F Từ D vẽ đường thẳng song song với AC cắt BC tại F

Ta có: \(\bigtriangleup\)ABC cân tại A \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}\) (1)

DF//AC \(\Rightarrow\) DF//EC \(\Rightarrow\) \(\begin{cases} \widehat{ACB}=\widehat{DFB}(2)\\ \widehat{FDI}=\widehat{IEC}(3) \end{cases}\)

Từ (1);(2) \(\Rightarrow\) \(\widehat{ABC}=\widehat{DFB}\)

\(\Rightarrow\) \(\bigtriangleup\)DFB cân tại D

\(\Rightarrow\) BD=DF.

Mà BD=CE(gt) \(\Rightarrow\) CE=DF.

Xét \(\bigtriangleup\)FDI và \(\bigtriangleup\)CEI có:

DF=CE(cmt)

\(\widehat{FDI}=\widehat{IEC}\) (cmt)

DI=IE(I là trung điểm DE)

\(\Rightarrow\) \(\bigtriangleup\)FDI = \(\bigtriangleup\)CEI (c-g-c)

\(\Rightarrow\) \(\widehat{FID}=\widehat{EIC}\)

Ta có: \(\widehat{DIC}+\widehat{CIE}\) = 180o

\(\widehat{FID}=\widehat{EIC}\) (cmt)

\(\Rightarrow\) \(\widehat{DIC}+\widehat{DIF}\) = 180o

\(\Rightarrow\) \(\widehat{FIC}=180^{0}\)

Hay \(\widehat{BIC}=180^{0}\)

\(\Rightarrow\) 3 điểm B,I,C thẳng hàng (đpcm)

9 tháng 5 2016

Kẻ DH song song với AC (H thuộc BC)

Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.

Xét 2 tam giác DHI và tam giác ECI

Ta có: 

Góc HDI = góc IEC ( vị trí so le trong của DH và AC)

DH = CE ( cùng bằng DB)

DI = IE (gt)

=> 2 tam giác bằng nhau c.g.c 

=> Góc DIB = Góc EIC 

mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.

(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt )

Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của...
Đọc tiếp

Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶

Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC

Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều

0