Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ABD và tam giác ACD có
AB=AC,AD là cạnh chung góc BAD= góc DAC
vậy tam giác ABD=tam giác ACD(C.g.c)
Suy ra gócADB=gócADC=1/2BDC=1/2*180=90
Hay AD vuông góc với BC
a: Xét ΔMAB và ΔMEC có
\(\widehat{MBA}=\widehat{MCE}\)
MB=MC
\(\widehat{AMB}=\widehat{EMC}\)
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
nên MA=ME
hay M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
DO đó: ABEC là hình bình hành
SUy ra: AC//BE
c: Sửa đề: BH\(\perp\)AC
Xét ΔAHB vuông tại H và ΔEKC vuông tại K có
AB=EC
\(\widehat{HAB}=\widehat{KEC}\)
Do đó:ΔAHB=ΔEKC
Suy ra: BH=CK
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
mà \(\widehat{BHC}=90^0\)
nên BHCK là hình chữ nhật
Suy ra: KH=BC
a) Xét ∆ vuông ABH ta có :
BH < AB ( trong ∆ vuông cạnh góc vuông nhỏ hơn cạnh huyền)
Xét ∆ vuông AHC ta có :
HC < AC (...)
=> BH < AC
b) Vì AH = HE
=> H là trung điểm AE
Mà BHA = 90°
=> BH vuông góc với AE
=> BH là trung trực ∆BAE
=> ∆BAE cân tại B
a) Đường xiên AB bé hơn đường xiên AC nên hình chiếu của AB trên BC bé hơn hình chiếu của AC trên BC
\(\Rightarrow BH< CH\left(đpcm\right)\)
b) Hai tam giác vuông ABH và EBH có:
BH: cạnh chung
HE = HA (gt)
Suy ra \(\Delta ABH=\Delta EBH\left(2cgv\right)\)
\(\Rightarrow AB=EB\)(hai cạnh tương ứng)
\(\Rightarrow\Delta ABE\)cân tại B ( có hai cạnh bên bằng nhau)
Tks nhá. Cần vkl.