K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 12 2022

a) Tứ giác \(AHMK\) có \(\widehat{HAK}=\widehat{MHA}=\widehat{MKA}=90^o\)do đó tứ giác này là hình chữ nhật. 

b) Tứ giác \(AMBE\) là hình thoi do có hai đường chéo vuông góc, cắt nhau tại trung điểm mỗi đường. Do đó \(BM\) song song với \(AE\)\(BM=AE\).

Tương tự \(MC\) song song với \(AF\)\(MC=AF\).

Suy ra \(E,A,F\) thẳng hàng (theo tiên đề Ơ-clit về đường thẳng song song) 

và \(AE=AF\).

Do đó \(E\) đối xứng với \(F\) qua \(A\).

c) \(BC=2AM=10\left(cm\right)\).

\(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

d) Để hình chữ nhật \(AHMK\) là hình vuông thì \(AM\) là đường phân giác của góc \(\widehat{HAK}\).

Khi đó tam giác \(ABC\) có \(AM\) là đường trung tuyến đồng thời là đường cao nên tam giác \(ABC\) cân tại \(A\).

Vậy tam giác \(ABC\) vuông cân tại \(A\).

e) Gợi ý: Dễ dàng chứng minh được tứ giác \(BEFC\) là hình bình hành (từ hai tứ giác \(BEAM,MAFC\) là hình thoi) suy ra hai đường chéo cắt nhau tại trung điểm mỗi đường, mà lại có \(AM\) là đường trung bình. Từ đó ta suy ra đpcm. 

 

10 tháng 7 2018

a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)

Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).

b) Áp dụng tính chất đối xứng trục ta có:

A H = A M , A 1 ^ = A 2 ^  và A K = A M , A 3 ^ = A 4 ^ .

Mà A 2 ^ + A 3 ^  = 900 Þ H, A, K thẳng hàng.

Lại có AH = AM = AK Þ H đối xứng với K qua A.

c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^  mà AM là đường trung tuyến.

Þ DABC vuông cân tại A.

24 tháng 6 2016

Hình vẽ đơn giản nên em có thể tự vẽ nhé.

a. Tứ giác AEMF là hình chữ nhật, AMBH hình thoi, AMCK là hình thoi.

b. Ta thấy AH = AM = AK. Lại có góc HAM+MAK = 2(BAM+MAC) = 2.90 = 180 độ. Vậy K đối xứng với H qua A.

c. Để AEMH là hình vuông thì ME = MF hay AC= AB. Vậy tam giác giác vuông ABC phải thêm điều kiện cân thì thì AEMH là hình vuông.

26 tháng 11 2016

a,

AEMF là hcn

AMBH là hthoi

AMCK là hthoi

b,cm thế nào nhỉ :V, khó nói ra quá, đại lạo thế này

cm h,a,k thẳng hàng (dựa vào hthoi)

cm ha=hk (=am)

rồi xong

c, cái này thì ko biết nói thật nè :V, chỉ có thể nói nó là tam giác vuông cân thôi

26 tháng 11 2016

AEMF là hcn

AMBH là hthoi

AMCK là hthoi

b,cm thế nào nhỉ :V, khó nói ra quá, đại lạo thế này

cm h,a,k thẳng hàng (dựa vào hthoi)

cm ha=hk (=am)

rồi xong

c, cái này thì ko biết nói thật nè :V, chỉ có thể nói nó là tam giác vuông cân thôi

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Giải thích các bước giải:

ta có: Tam giác ABC vuông tại A (gt)

=> AB^2+AC^2=BC^2

      6^2+8^2     =BC^2

       36+64         =BC^2

        100             =BC^2

     =>BC=10cm

Tam giác ABC vuông tại A có Am là đg trung tuyến

=> AM=BC/2=10/2=5cm

15 tháng 3 2020

HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ. 

Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.

b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.

=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.

Do đó ADMC là hình thang vuông.

c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)

=> D là trung điểm của AB.

Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)

Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)

Từ (1) và (2) => AEBM là hình thoi.

d) Vì AEBM là hình thoi => AE // BM, AE = BM. 

Mà BM = MC =>  AE // MC, AE = MC. Do đó AEMC là hình bình hành.

e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.

Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I. 

Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC. 

Mà AE // MC, AE = MC (cmt)

=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)

Vậy F đối xứng E qua A.