K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

-Gọi M, N là t/đ của AB,AC \(\Rightarrow\)MO,NO là các đường trung trực của △ABC.

-MO là trung trực của đoạn AB \(\Rightarrow AO=BO;\widehat{AOB}=180^0-2\widehat{OAB}\)

(t/c trung trực)

-NO là trung trực của đoạn AC \(\Rightarrow AO=CO;\widehat{AOC}=180^0-2\widehat{OAC}\)

(t/c trung trực)

\(\Rightarrow\widehat{AOB}+\widehat{AOC}=180^0-2\widehat{OAB}+180^0-2\widehat{OAC}=360^0-2.90^0=180^0\)

\(\Rightarrow\widehat{BOC}=180^0\) nên B,O,C thẳng hàng

Mà \(AO=BO=CO\Rightarrow\)O là trung điểm BC.

17 tháng 5 2017

A B C E D F 1 2

a) Vì BC2 = 102 = 100

AB2 + AC2 = 62 + 82 = 100

Nên AB2 + AC2 = BC2

Do đó: \(\Delta ABC\) vuông tại A

b) Xét hai tam giác vuông ABD và EBD có:

BD: cạnh huyền chung

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)

Suy ra: DA = DE (hai cạnh tương ứng)

c) \(\Delta DAF\) vuông tại A

=> DF > DA (đường vuông góc ngắn hơn đường xiên)

Mà DA = DE

Do đó: DF > DE (đpcm)

d) Xét hai tam giác vuông ABC và EBF có:

AB = EB (\(\Delta ABD=\Delta EBD\))

\(\widehat{B}\): góc chung

Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)

\(\Rightarrow\) BF = BC (hai cạnh tương ứng)

\(\Rightarrow\) \(\Delta BFC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC

Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).

17 tháng 5 2017

a) Ta có :

\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )

b) Xét \(\Delta DBA\)\(\Delta DBE\),có :

Chung cạnh BD

\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )

\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)

17 tháng 11 2017

Các bạn làm mỗi câu c thôi ,câu a , b mình làm đc rồi

28 tháng 2 2017

A B H E C D I

Từ D hạ DI vuông góc với AH sao cho I thuộc AH => Góc AID = 90 độ

Xét tam giác vuông ABH và tam giác vuông DIA có: AB=AD (gt),

\(\widehat{A_1}+\widehat{A_2}=90^o\)\(\widehat{A_2}+\widehat{D_1}=90^o\) => \(\widehat{A_1}=\widehat{D_1}\) , \(\widehat{AID}=\widehat{AHB}=90^o\)

=> Tam giác AHB= tam giác DIA (ch-gn) => AH=DI (1)

Xét tứ giác IHDE có : \(\widehat{HID}=\widehat{IHE}=\widehat{HED}=90^o\) => Tứ giác IHED là hình chữ nhật => HE=DI (2)

Từ (1) và (2) => HA=HE => đpcm

6 tháng 11 2016

Xét tam giác ADE và ABC có

A : góc chung

D = B (đồng vị)

E = C (đồng vị)

Ta có: Dx // BC mà D là trung điểm của AB

=> E là trung điểm của AC

=> AE = EC (đpcm)

7 tháng 11 2016

mơn bn ak

5 tháng 4 2017

a) \(\left(x-3\right)\left(x-2\right)< 0\)

Ta có : \(x-2>x-3\)

\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)

Vậy \(2< x< 3\)

b) \(3x+x^2=0\)

\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

Vậy \(x\in\left\{-3;0\right\}\)

13 tháng 10 2017

A M E B D C

a) Vì \(\widehat{ACE}\)\(\widehat{BAC}\) là hai góc so le trong

=> \(AB//CE\) ( tính chất hai đường thẳng song song )

b) Vì AD là tia phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAD}=\widehat{DAC}\)

Vì CM là tia phân giác của \(\widehat{ACE}\Rightarrow\widehat{ACM}=\widehat{MCE}\)

Ta có : \(\widehat{ACE}=\widehat{BAC}\) ( so le trong )

=>\(\dfrac{1}{2}\widehat{ACE}=\dfrac{1}{2}\widehat{BAC}\)

hay \(\widehat{DAC}=\widehat{ACM}\)

Mà hai góc này nằm ở vị trí so le trong \(\Rightarrow AD//CM\)

13 tháng 10 2017

a. Ta có: \(\widehat{BAC}=\widehat{ACE}\left(gt\right)\)

Mà hai góc này ở vị trí số le trong

\(\Rightarrow AB//CE\)

b. Ta có: \(\widehat{BAD}=\widehat{CAD}=\dfrac{1}{2}\widehat{BAC}\) (AD là phân giác của \(\widehat{BAC}\))

\(\widehat{ACM}=\widehat{MCE}=\dfrac{1}{2}\widehat{ACE}\) (CM là phân giác của \(\widehat{ACE}\) )

\(\widehat{BAC}=\widehat{ACE}\left(gt\right)\)

\(\Rightarrow\widehat{CAD}=\widehat{ACM}\) mà hai góc này ở vị trí so le trong

\(\Rightarrow AD//CM\)

3 tháng 3 2017

A B C M H N K

a) Xét \(\Delta ABM\)\(\Delta ACM\) có:

AB = AC (\(\Delta ABC\) cân tại A)

AM chung

BM = CM (suy từ gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

hay \(\widehat{HBM}=\widehat{KCM}\)

Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;

BM = CM

\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)

\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)

c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)

\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)

\(\Delta ABM=\Delta ACM\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)

\(\Rightarrow\Delta ABM\) vuông tại M

Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=17^2-8^2\)

\(\Rightarrow AM^2=15^2\)

\(\Rightarrow AM=15\)

Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)

Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).

14 tháng 4 2017

Nguyễn Thanh Xuân uh vui

14 tháng 4 2017

Bạn vào link này nha: https://hoc24.vn/hoi-dap/question/208608.html