Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
=>ΔAHC=ΔDHC
b: Xet tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
=>DE vuông góc AC
mà CE vuông góc AD
nên E là trực tâm
Hình tự vẽ
a, Xét \(\Delta ABH\)và \(\Delta DBH\)
Có : HA=HD
BH là cạnh chung
\(\widehat{AHB}=\widehat{AHB}=90^0\)
=> \(\Delta ABH=\Delta DBH\left(c.g.c\right)\)
đnag nghĩ tiếp ...
Nhầm : \(\widehat{AHB}=\widehat{DHB}=90^0\)
b, Theo định lí 3 cạnh của tam giác có số đo là 1800
Như ta đã bt \(\widehat{DHB}=90^0\)
\(\Rightarrow\widehat{DHB}+\widehat{HDC}=180^0\)
\(\Rightarrow\widehat{HDC}=180^0-\widehat{DHB}\)
\(\Rightarrow\widehat{HDC}=180^0-90^0=90^0\)
Mà \(\widehat{DHB}+\widehat{HDC}=\widehat{BDC}\)
\(90^0+90^0=\widehat{BDC}\)
\(180^0=\widehat{BDC}\)
Vậy \(\widehat{BDC}=180^0\)
a)Xét \(\Delta\)AHC và \(\Delta\)DHC:
AHC=DHC=90
AC=DC
HC chung
=>\(\Delta\)AHC=\(\Delta\)DHC(c-g-c)
b)Áp dụng Định lý Pythagoras cho tam giác vuông ABC, ta được:
AB2+AC2=BC2=>AC2=BC2-AB2=102-62=64=>AC=8cm
c)Xét \(\Delta\)AHB và \(\Delta\)DHE:
AHB=DHE=90
BH=EH
AH=DH
=>\(\Delta\)AHB=\(\Delta\)DHE(c-g-c)
d)\(\Delta\)AHE vuông tại H=>AE>HE
\(\Delta\)DHE vuông tại H=>CD>HC
Suy ra:
AE+CD>HE+HC=BH+HC=BC
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HA=HD
HB chung
DO đó: ΔABH=ΔDBH
b: Xét ΔBAC và ΔBDC có
BA=BD
góc ABC=góc DBC
BC chung
DO đó: ΔBAC=ΔBDC
=>góc BDC=90 độ
c: ΔHBA=ΔHBD
nên góc HBA=góc HBD
=>góc HAC=góc HBD