Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc ABD=góc EBD
=>BD là phân giác của góc ABE
c: Xét ΔBEM vuông tại E và ΔBAC vuôg tại A có
BE=BA
góc EBM chung
=>ΔBEM=ΔBAC
=>BM=BC
tự vẽ hình đi nhá
a) xét ∆ABD và ∆EBD vuông tại A và E có:
BD chung
\(\widehat{ABD}=\widehat{DBE}\left(gt\right)\)
=> ∆ABD=∆EBD (cạnh huyền - góc nhọn)
b) xét ∆EDC có DC>DE (vì DC là cạnh huyền)
mà AD=DE (vì ∆ABD=∆EBD)
=> AD<CD (đpcm)
c) xét ∆KAD và ∆CED vuông tại A và E có
AD=DE (vì ∆ABD=∆EBD)
AK=EC (gt)
=> ∆KAD=∆CED (cgv-cgv)
=> \(\widehat{ADK}=\widehat{EDC}\)
mà 2 góc này ở vị trí đối đỉnh
=> K, D, E thẳng hàng (cách này bn nên tham khảo)
d) gọi đường trung trực của AC giao tại AC là H
Xét ∆AIC có
IH vừa là đường cao vừa là trung tuyến
=> ∆AIC cân tại I
=> AI=IC
Xét ∆ABC có
AI=IC
=> AI=IC=BI (tính chất đường trung tuyến của tam giác vuông)
=>I là trung điểm của BC
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: Xét ΔABD và ΔEBD có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>ΔBED vuông tại E
c: AD=DE
DE<DC
=>AD<DC
d: AB+EF=BE+EF
mà BE+EF>BF
nên AB+EF>BF
a) Tam giác ABD và EBD có:
Góc ABD = EBD (BD là phân giác)
Cạnh BA = BE (gt)
Cạnh BD chung
=> Tam giác ABD = EBD (c-g-c) (*)
b) Từ (*) => góc BED = 90 độ (= góc BAD)
=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE (1)
mà từ (*) => DE = AD (2)
Từ (1) và (2) => DC > AD
c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm
Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC
=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.
Vậy B, D, S thẳng hàng.
Bài 2:
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
b: ΔABC=ΔADC
=>CB=CD
=>ΔCBD cân tại C
c: BF cắt DE tại I
nên B,I,F thẳng hàng
Bài 1:
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
Do đó: ΔBAD=ΔBED
b:
Sửa đề: Chứng minh DA<DC
Ta có: ΔBAD=ΔBED
=>DA=DE
mà DE<DC
nên DA<DC