K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2022

`@`Xét tam giác ABC vuông A, đường cao AH:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

\(CH+BC-BH=10-3,6=6,4\left(cm\right)\)

\(AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8\left(cm\right)\)

`@`Xét tam giác AHB vuông H, đường cao HM:

\(\dfrac{1}{HM^2}=\dfrac{1}{BH^2}+\dfrac{1}{AH^2}\)

\(\Leftrightarrow\dfrac{1}{HM^2}=\dfrac{1}{3,6^2}+\dfrac{1}{4,8^2}\)

\(\Leftrightarrow HM=2,88\left(cm\right)\)

\(BM=\sqrt{BH^2-HM^2}=\sqrt{3,6^2-2,88^2}=2,16\left(cm\right)\)

`@`Xét tam giác AHC vuông H, đường cao HN:

\(\dfrac{1}{HN^2}=\dfrac{1}{HC^2}+\dfrac{1}{AH^2}\)

\(\Leftrightarrow\dfrac{1}{HN^2}=\dfrac{1}{6,4^2}+\dfrac{1}{4,8^2}\)

\(\Leftrightarrow HN=3,84\left(cm\right)\)

\(NC=\sqrt{HC^2-HN^2}=\sqrt{6,4^2-3,84^2}=5,12\left(cm\right)\)

`@`Ta có: \(\left\{{}\begin{matrix}\widehat{B}+\widehat{MHB}=90^o\\\widehat{C}+\widehat{NHC}=90^o\\\widehat{B}+\widehat{C}=90^o\end{matrix}\right.\) \(\rightarrow\widehat{MHN}=90^o\)

Ta có: 

\(S_{BHM}=\dfrac{1}{2}.MB.MH=\dfrac{1}{2}.2,16.2,88=3,1104\left(cm^2\right)\)

\(S_{NHC}=\dfrac{1}{2}.NH.NC=\dfrac{1}{2}.3,84.5,12=9,8304\left(cm^2\right)\)

\(S_{MHN}=\dfrac{1}{2}.MH.NH=\dfrac{1}{2}.2,88.3,84=5,5296\left(cm^2\right)\)

\(S_{BCNM}=S_{BHM}+S_{NHC}+S_{MHN}\)

             \(=3,1104+9,8304+5,5296\)

            \(=18,4704\left(cm^2\right)\)

 

 

 

12 tháng 9 2021

có thể theo hệ thức lượng(gợi ý)

ta có Sabc=1/2ab.ac (trong tg vuông dg cao là cạnh góc vuông)

         Sabc=1/2ah.bc

=>ah.bc=ab.ac (có thể xét tg đồng dạng rồi lập tỉ số)

 

b: Xét ΔABH vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN\(\sim\)ΔACB

5 tháng 11 2023

loading...

`a)` Tỉ số lượng giác góc `B` của \(\Delta ABC\)

\(SinB=\dfrac{AC}{BC}\\ CosB=\dfrac{AB}{BC}\\ TanB=\dfrac{AC}{AB}\\ CotB=\dfrac{AB}{AC}\)

`b)` Tính `BC,AH`

Xét \(\Delta ABC\) vuông tại `A`, đường cao `AH`

Ta có: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\left(htl\right)\)

\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\\ \Rightarrow\dfrac{1}{AH^2}=\dfrac{25}{576}\\ \Rightarrow AH^2=\dfrac{576\cdot1}{25}=23,04\\ \Rightarrow AH=\sqrt{23,04}=4,8cm\)

Ta có: \(AB\cdot AC=AH\cdot BC\left(htl\right)\)

\(\Rightarrow6\cdot8=4,8\cdot BC\\ \Rightarrow48=4,8\cdot BC\\ \Rightarrow BC=\dfrac{48}{4,8}\\ \Rightarrow BC=10cm\)

Vậy: `AH = 4,8cm; BC= 10cm`

`c)` C/m: `AE * AB = AF * AC`

Xét \(\Delta AHB\) vuông tại `H`, đường cao `HE`

Ta có: \(AH^2=AE\cdot AB\left(htl\right)\)     `(1)`

Xét \(\Delta AHC\) vuông tại `H`, đường cao `HF`

Ta có: \(AH^2=AF\cdot AC\left(htl\right)\)     `(2)`

Từ `(1)` và `(2)` \(\Rightarrow AH^2=AH^2\)

\(\Rightarrow AE\cdot AB=AF\cdot AC\left(=AH^2\right).\)

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=7,2(cm)

28 tháng 8 2021

a, Xét tứ giác AMHN có : ^AMH = ^MAN = ^ANH = 900

Vậy tứ giác AMHN là hình chữ nhật 

b, Ta có : \(AH^2=AM.AB\)( hệ thức lượng ) (1)

\(AH^2=AN.AC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Xét tam giác AMN và tam giác ACB ta có : 

^A _ chung 

\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )

Vậy tam giác AMN ~ tam giác ACB ( c.g.c ) 

\(\Rightarrow\frac{AM}{AC}=\frac{MN}{BC}\)(3) 

Theo định lí Pytago tam giác ABC vuông tại A 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{36+64}=10\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}=\frac{24}{5}\)cm 

Lại có : \(AH^2=AM.AB\)( cmt ) \(\Rightarrow AM=\frac{AH^2}{AB}=\frac{96}{25}\)cm 

\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{MN}{BC}\Rightarrow MN=\frac{AM.BC}{AC}=\frac{24}{5}\)cm 

c, Vì E là trung điểm BH mà tam giác BMH vuông tại M

=> ME là đường trung tuyến 

=> \(ME=\frac{1}{2}BH\)(4) 

Vì F là trung điểm HC mà tam giác HNC vuông tại N 

=> NF là đường trung tuyến 

=> \(NF=\frac{1}{2}HC\)(5) 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm (6) 

=> \(HC=BC-HB=10-\frac{18}{5}=\frac{32}{5}\)cm (7)

Thay (6) vào (4) ta được : \(ME=\frac{1}{2}BH=\frac{1}{2}.\frac{18}{5}=\frac{18}{10}=\frac{9}{5}\)cm 

Thay (7) vào (5) ta được : \(NF=\frac{1}{2}HC=\frac{1}{2}.\frac{32}{5}=\frac{32}{10}=\frac{16}{5}\)cm 

d, mình chưa tìm ra dữ kiện 

12 tháng 10 2023

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

\(S_{AEF}=\dfrac{1}{16}\cdot S_{ABC}\)

=>\(\dfrac{1}{2}\cdot AE\cdot AF=\dfrac{1}{16}\cdot\dfrac{1}{2}\cdot AB\cdot AC\)

=>\(AE\cdot AF=\dfrac{1}{16}\cdot AB\cdot AC\)

=>\(\dfrac{AH^2}{AB}\cdot\dfrac{AH^2}{AC}=\dfrac{1}{16}\cdot AB\cdot AC\)

=>\(AH^4=\dfrac{1}{16}\cdot AB^2\cdot AC^2\)

=>\(AH^2=\dfrac{1}{4}\cdot AB\cdot AC=\dfrac{1}{4}\cdot AH\cdot BC\)

=>\(AH=\dfrac{1}{4}\cdot BC\)

Gọi M là trung điểm của BC

=>AH vuông góc HM tại H

ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{1}{2}BC\)=MB=MC

=>\(\dfrac{AH}{AM}=\dfrac{1}{2}\) và ΔMAC cân tại M

Xét ΔAHM vuông tại H có

\(sinAMH=\dfrac{AH}{AM}=\dfrac{1}{2}\)

=>\(\widehat{AMB}=30^0\)

=>\(\widehat{AMC}=150^0\)

ΔMAC cân tại M

=>\(\widehat{MCA}=\dfrac{180^0-\widehat{AMC}}{2}=15^0\)

=>\(\widehat{ACB}=15^0\)

16 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=4,8cm

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{ACB}\simeq36^052'\)

b: ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\widehat{AFE}=\widehat{ABC}\)

a: AB/AC=2/3

=>HB/HC=4/9

=>HB/4=HC/9=(HB+HC)/(4+9)=2*căn 13/13

=>HB=8/13*căn 13; HC=18/13*căn 13(cm)

\(AH=\sqrt{HB\cdot HC}=\dfrac{12\sqrt{13}}{13}\left(cm\right)\)

NV
23 tháng 12 2022

Em kiểm tra lại đề bài, tam giác ABC cân tại A hay vuông tại A?

Vì nếu cân tại A thì BH=CH, nhưng đề lại cho BH=2, CH=8 vô lý