Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=25cm
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)
Do đó: AD=7,5cm; CD=12,5(cm)
b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc ABD=góc DBC
nên góc ADI=góc AID
hay ΔAID cân tại A
A B C H D 3 4
Xét \(\Delta ABC\)\(\perp\) tại \(A\)
Áp dụng định lí py - ta - go :
BC2 = AB2 + AC2
BC2 = 32 + 42
BC2 = 9 + 16
BC2 = 25
BC = 5 cm
Vậy BC = 5 cm .
Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)
\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm
Ta có : AC = AD + DC
4 = 1,5 + DC
\(\Rightarrow DC=2,5\)cm
Xét \(\Delta AHB\) và \(\Delta CAB\) có :
\(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )
\(\widehat{B}\) chung
\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )
Do \(\Delta AHB\) \(~\)\(\Delta CAB\)
\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)
1: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
2: ΔABC vuông tại A mà AH là đường cao
nên BA^2=BH*BC
3: \(\dfrac{S_{AHB}}{S_{CAB}}=\left(\dfrac{AB}{CB}\right)^2=\dfrac{9}{25}\)
Bài 2:
A B C D H 1
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
A B C H I D
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
a) BC = 10 cm ; DA = 3 cm ; DC = 6cm
b) AH = 4.8 cm
a)ΔABC vuông tại A
Áp dụng định lí Pitago:
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=6^2+8^2=10cm\)
Ta có : BD là tia phân giác
\(\Rightarrow\frac{DA}{DC}=\frac{BA}{BC}=\frac{6}{10}=\frac{3}{5}\)
\(Hay\frac{DA}{AC-AD}=\frac{3}{5}\)
\(\Rightarrow\frac{DA}{8-DA}=\frac{3}{5}\)
=> 5DA = 3 ( 8 - DA ) <=> 5DA = 24 - 3DA <=> 8DA = 24 <=> DA = 3cm
=> DC = AC - AD = 9 - 3 = 6cm
b)ΔABC vuông tại H
Áp dụng hệ thức lượng trong tam giác vuông
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8cm\)