Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a>b\) nên \(a=b+m\) \(\left(m\inℕ^∗\right)\)
Ta có : \(\frac{a}{b}=\frac{b+m}{b}=1+\frac{m}{b}\)
\(\frac{a+c}{b+c}=\frac{b+m+c}{b+c}=1+\frac{m}{b+c}\)
Mà \(\frac{m}{b}>\frac{m}{b+c}\) nên \(1+\frac{m}{b}>1+\frac{m}{b+c}\)
hay \(\frac{a}{b}>\frac{a+c}{b+c}\) (đpcm)
Theo cj nghĩ :
\(a>b\Rightarrow a-b>0\left(a;b\inℕ^∗\right)\)
Mà : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)
Do đó : \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé! :)
Trong 4 số a,b,c,d sẽ có ít nhất 2 số có cùng số dư khi chia cho 3 nên tích đó sẽ chia hết cho 3.
Trong 4 số a,b,c,d
Nếu có 2 số có cùng số dư khi chia cho 4 thì tích đó chia hết cho 4
Nếu không có cùng số dư thì số dư của 4 số đó chia cho 4 lần lược sẽ là 0,1,2,3. Vậy trong 4 số này có 2 số chẵn, 2 số lẻ. Mà hiệu 2 số chẵn và lẻ đều là số chẵn nên tích đó phải có ít nhât 2 số chẵn hay tích đó chia hết cho 4
Vì 3 và 4 nguyên tố cùng nhau nên tích đã cho chia hết cho 12
Xét mọi trường hợp chẵn lẽ của a,b,c,d ta thấy đều có 2 thừa số chẵn trở lên
=> Tích chia hết cho 4 (*)
Theo nguyên lí Đi-rich-lê, trong 4 số a,b,c,d luôn có 2 số có cùng số dư với 3.
=> Hiệu 2 số đó chia hết cho 3.
=> Tích chia hết cho 3 (**).
Vì (3,4) = 1 nên từ (*)và (**).
=> Tích chia hết cho 12.
Bài 2:
a: Số đối của a-b là -(a-b)=-a+b=b-a
b: (a-b)(b-a)=-(a-b)2<0
Bài 2:
Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :
Bình phương 2 vế của (*) ta có:
\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)
Áp dụng (*) vào bài toán ta có:
\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)
a) a<b
=>ac<bc (vi c>0)
=>ac+ab<bc+ab
=>a(b+c)<b(a+c)
=>a/b<a+c/b+c
b) lam nguoc lai cau a
(a+b+c)(1/a+1/b+1/c)=<10?
ài này phải có thêm đk là 1 ≤ a, b, c ≤ 2 ; nếu ko có đk này thì bđt chưa đúng như bác Hoàng Khôi đã dẫn ra chổ sai
hơn nữa tôi có thấy bài này 1 lần có đk đó: a, b, c thuộc [1,2]
và vp-two có giải là: (a+b+c)(1/a+1/b+1/c) ≥ 9
(chứ không phải là ≤ 9 như @Inguyenmai đâu nha)
- - -
cần cm: (a+b+c)(1/a+1/b+1/c) ≤ 10 (♥)
<=> a/b + a/c + b/a + b/c + c/a + c/b ≤ 7 (♥♥)
không giãm tính tổng quát giả sử 1 ≤ a ≤ b ≤ c ≤ 2
ta có: (a-b)(b-c) ≥ 0 <=> ab+bc ≥ b² + ac (*)
chia 2 vế của (*) cho bc ta có: a/c + 1 ≥ b/c + a/b (1*)
chia 2 vế của (*) cho ab ta có: 1 + c/a ≥ c/b + b/a (2*)
lấy (1*) + (2*) và đổi hướng bđt ta có:
b/c + a/b + c/b + b/a ≤ 2 + a/c + c/a
=> a/b + a/c + b/a + b/c + c/a + c/b ≤ 2 + 2(a/c + c/a) (**)
do giả thiết: 1 ≤ a ≤ c ≤ 2 nên 1 ≤ c/a ≤ 2 => c/a - 2 ≤ 0 và c/a - 1/2 ≥ 0
=> (c/a - 1/2)(c/a - 2) ≤ 0 <=> (c/a)² - (5/2)(c/a) + 1 ≤ 0
=> (c/a)² + 1 ≤ (5/2).(c/a) (tiếp theo là chia hai vế cho c/a )
=> c/a + a/c ≤ 5/2 ; thay vào (**) ta có
a/b + a/c + b/a + b/c + c/a + c/b ≤ 2 + 2(5/2) = 7 vây (♥♥) đúng => (♥) đúng
dấu "=" khi c/a = 2 => c = 2, a = 1 , (b = 1 hoặc b = 2)
tức dấu "=" tại: a = b = 1; c = 2 hoặc a = 1, b = c = 2 và các hoán vị
p/s:tham khảo
K hiểu