\(\le0\)

các bn ơi giúp mk với !mk đan...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

a/

\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)

\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)

+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z

+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z

b/

\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)

=> m=y

+

29 tháng 8 2016

cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha

4 tháng 3 2018

Ta có : \(\sqrt{17}>\sqrt{16}\) , \(\sqrt{26}>\sqrt{25}\) 

=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

mà \(\sqrt{99}< \sqrt{100}=10\) 

=> a > b

6 tháng 7 2019

Tạm thời giải phần a đã nhé -_-

a, Từ a/b = c/d => a/c=b/d

Đặt a/c=b/d=k thì a=ck, b=dk

Xét : 4a-3b/4a+3b=4ck-3dk/4ck+3dk=k.(4c-3d)/k.(4c+3d)=4c-3d/4c+3d

=> 4a-3b/4a+3b=4c-3d/4c+3d => 4a-3b/4c-3d=4a+3b/4c+3d

Nhìn trên máy khó lắm viết lại theo lời giải ra nháp trc' cho dễ nhìn nhé @@

6 tháng 7 2019

\(a,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}\)\(\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4a+3d}\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(đpcm\right)\)

\(b\)Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow a=ck;b=dk\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=\frac{c^2k^2-d^2k^2}{c^2-d^2}=\frac{k^2\left(c^2-d^2\right)}{c^2-d^2}=k^2\)\(\left(3\right)\)

Mà \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)\(\left(4\right)\)

Từ ( 3 ) và ( 4 ) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)

\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(5\right)\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(6\right)\)

TỪ ( 5 ) và ( 6 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{2a+5b}{2c+5d}\left(đpcm\right)\)

8 tháng 3 2018

Các bn ơi giúp mk với.....

13 tháng 2 2017

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{5a}{5}=\frac{2b}{4}=\frac{8c}{24}=\frac{5a+2b+8c}{5+4+24}\)(*)

\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{-3a}{-3}=\frac{-4b}{-8}=\frac{6c}{18}=\frac{-3a-4b+6c}{-3-8+18}\)(**)

Lấy (*) chia cho (**) được kết quả: A=\(\frac{7}{33}\)

11 tháng 8 2016

Đề sai: \(x^2=bc\) phải là \(a^2=bc\)

Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)

\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)

\(\Rightarrow a-ka=-b-kb\)

\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1) 

Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)

\(\Rightarrow c-kc=-a-ka\)

\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\)  ( 2)

Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)

                   \(\Rightarrow a^2=bc\left(đpcm\right)\)

11 tháng 8 2016

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

\(k\)nhé !!!

5 tháng 6 2020

ô vlin :< m đăng chơi à ?

5 tháng 6 2020

Miyuki Misaki Ko, lên đây tham khảo nhưng nhấn lộn:>>>

24 tháng 3 2019

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow2\left(ab+bc+ca\right)=-\left(a^2+b^2+c^2\right)\)

Ta lại có : \(\left(a^2+b^2+c^2\right)\ge0\)

\(\Rightarrow-\left(a^2+b^2+c^2\right)\le0\)

\(\Rightarrow2\left(ab+bc+ca\right)\le0\)

\(\Rightarrow ab+bc+ca\le0\left(2>0\right)\)

\(\Rightarrowđpcm\)

25 tháng 12 2016

Ta có \(a+b+c=0\)

\(=>a=-b-c\)

Ta có \(ab+bc+ac\le0\)

\(=>\left(-b-c\right)b+bc+\left(-b-c\right)c\le0\)

\(=>-b^2-bc+bc-bc-c^2\le0\)

\(=>-b^2-bc-c^2\le0\)

\(=>-\left(b^2+bc+c^2\right)\le0\)(ĐPCM)

1 tháng 4 2017

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(a^2+b^2+c^2\ge0\)

\(a^2+b^2+c^2=-\left(2ab+2bc+2ac\right)\)

\(\Rightarrow2ab+2bc+2ca\le0\Leftrightarrow ab+bc+ac\le0\)