\(a;b;c\) thỏa mãn \(a+b+c=0\) chứng minh rằng:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

\(ab+2bc+3ac\\ =\left(ab+ac\right)+\left(2bc+2ac\right)\\ =a\left(b+c\right)+2c\left(a+b\right)\\ =a.\left(-a\right)+2c\left(-c\right)\\ =-a^2-2c^2\\ =-\left(a^2+2c^2\right)\le0\)

25 tháng 2 2018

nhanh phết

12 tháng 5 2018

Giải:

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm). 

12 tháng 5 2018

Trả lời

Theo đề ra ta có:

a+b+c=0

\(\Rightarrow\)ab+2ab+3ac=-a(a+c)-2c(a+c)+3ac

          =\(-a^2-ac-2ac-2ac^2+3ac\)

           \(=-\left(a^2+2c^2\right)\le0\)

Vậy nếu a+b+c=0 thì \(ab+2bc+3ac\le0\left(đpcm\right)\)

21 tháng 3 2017

Giải:

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}b+c=-a\\a+b=-c\end{matrix}\right.\)

\(\Rightarrow ab+2bc+3ca\)

\(=ab+ca+2bc+2ca\)

\(=a\left(b+c\right)+2c\left(a+b\right)\)

\(=a\left(-a\right)+2c\left(-c\right)\)

\(=-a^2-2c^2\le0\)

Vậy \(ab+2bc+3ca\le0\) (Đpcm)

21 tháng 3 2017

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).

25 tháng 12 2016

Ta có \(a+b+c=0\)

\(=>a=-b-c\)

Ta có \(ab+bc+ac\le0\)

\(=>\left(-b-c\right)b+bc+\left(-b-c\right)c\le0\)

\(=>-b^2-bc+bc-bc-c^2\le0\)

\(=>-b^2-bc-c^2\le0\)

\(=>-\left(b^2+bc+c^2\right)\le0\)(ĐPCM)

1 tháng 4 2017

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(a^2+b^2+c^2\ge0\)

\(a^2+b^2+c^2=-\left(2ab+2bc+2ac\right)\)

\(\Rightarrow2ab+2bc+2ca\le0\Leftrightarrow ab+bc+ac\le0\)

3 tháng 2 2020

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{4}a+\frac{1}{2}b+c\)

\(\Rightarrow f\left(-2\right)=4a-2b+c\)

\(\Rightarrow f\left(\frac{1}{2}\right)+f\left(-2\right)=\frac{17}{4}a-\frac{3}{2}b+2c\)

\(\Rightarrow4\left[f\left(\frac{1}{2}\right)+f\left(-2\right)\right]=17a-6b+8c=0\)( vì 17a-6b+8c=0)

\(\Rightarrow f\left(\frac{1}{2}\right)+f\left(-2\right)=0\)

\(\Rightarrow f\left(\frac{1}{2}\right)=-f\left(-2\right)\)

\(\Rightarrow f\left(\frac{1}{2}\right).f\left(-2\right)=-\left[f\left(-2\right)\right]^2\le0\left(đpcm\right)\)

24 tháng 3 2019

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow2\left(ab+bc+ca\right)=-\left(a^2+b^2+c^2\right)\)

Ta lại có : \(\left(a^2+b^2+c^2\right)\ge0\)

\(\Rightarrow-\left(a^2+b^2+c^2\right)\le0\)

\(\Rightarrow2\left(ab+bc+ca\right)\le0\)

\(\Rightarrow ab+bc+ca\le0\left(2>0\right)\)

\(\Rightarrowđpcm\)

1 tháng 9 2019

xin lỗi các bạn . Mình nhầm đề . Các bạn ko cần trả lời câu hỏi này đâu 

1 tháng 9 2019

Mình xin lỗi . Đây đúng là đề bài thật . Các bạn làm giúp mình với nha !! Thành thật xin lỗi